酒石酸强化重金属复合污染模拟土壤电动修复过程及机理分析

李超, 范文瑞, 岳正波, 万章弘, 王进. 酒石酸强化重金属复合污染模拟土壤电动修复过程及机理分析[J]. 环境工程学报, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084
引用本文: 李超, 范文瑞, 岳正波, 万章弘, 王进. 酒石酸强化重金属复合污染模拟土壤电动修复过程及机理分析[J]. 环境工程学报, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084
LI Chao, FAN Wenrui, YUE Zhengbo, WAN Zhanghong, WANG Jin. Process and mechanism analysis on tartaric acid enhanced electrokinetic remediation of simulated heavy metal combined contamination soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084
Citation: LI Chao, FAN Wenrui, YUE Zhengbo, WAN Zhanghong, WANG Jin. Process and mechanism analysis on tartaric acid enhanced electrokinetic remediation of simulated heavy metal combined contamination soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084

酒石酸强化重金属复合污染模拟土壤电动修复过程及机理分析

    作者简介: 李超(1994—),男,硕士研究生。研究方向:重金属污染土壤修复。E-mail:1446041870@qq.com
    通讯作者: 王进(1978—),女,博士,教授。研究方向:环境污染控制与修复。E-mail:sophiawj@hfut.edu.cn
  • 基金项目:
    中央高校基本科研业务费项目(JZ2017YYPY0246)
  • 中图分类号: X53

Process and mechanism analysis on tartaric acid enhanced electrokinetic remediation of simulated heavy metal combined contamination soil

    Corresponding author: WANG Jin, sophiawj@hfut.edu.cn
  • 摘要: 为提高电动修复重金属复合污染土壤的效率,通过配制重金属复合污染模拟土壤,构建电动修复实验装置,利用2因素完全随机实验设计研究了酒石酸浓度和时间对重金属去除效果的影响;采用BCR法对土壤金属赋存形态进行了分析表征。结果表明:与对照相比,以酒石酸为电解液显著提高了重金属的去除率;重金属去除率受酒石酸浓度和修复时间影响显著;以0.05 mol·L−1酒石酸为电解液修复120 h后,重金属去除效果最好,重金属总去除率为86.15%,Cu2+、Mn2+、Cd2+、Pb2+、Zn2+的去除率分别为75.67%、98.11%、85.1%、70.75%和90.9%。BCR分析表明,酒石酸有助于提高土壤中弱酸提取态重金属含量,提高了重金属的迁移性能,从而有利于电动修复过程。
  • 城市污水处理厂进水碳源不足是一个普遍存在的问题,导致后续脱氮效率较低。目前,解决该问题的主要方法之一是外加部分碳源,如甲醇和乙酸钠等。但添加的物质部分还有毒性,而且药剂成本较高。如何以较低的成本提高脱氮效率是低碳氮比污水生物脱氮亟待解决的问题,寻找合适的外加碳源成为目前关注的热点[1]。水解酸化是把污泥中的大分子有机物分解成小分子有机物,得到挥发性脂肪酸(VFAs)的过程。而VFAs中的乙酸和丙酸是增强生物脱氮的有利碳源,其反硝化速率比甲醇和乙醇更高[2]

    超磁分离水体净化工艺是近年来发展起来的一种物化水处理技术。磁分离技术借助外加磁场强化固液分离效率,较生物吸附技术处理效率高,较膜分离技术能耗低,能弥补现有碳源浓缩技术各自的劣势,满足节能降耗需求[3-5]。其能快速有效的去除生活污水中的大部分有机物,COD分离去除率约为75%,SCOD的分离去除率超过60%,TP去除率接近90%[6]。本研究所采用的超磁分离设备的进水为生化处理前的污水,所以超磁分离污泥类似于初沉污泥。而初沉污泥中含有大量的有机物,是很好的发酵底物[7]。目前,国内外有许多关于初沉污泥[7],剩余污泥[8],以及两者混合污泥[9]的水解产酸的研究报道。但是对于超磁分离污泥与剩余污泥协同水解酸化的相关研究,还很少见。现有研究发现在不调控pH,温度为30 ℃的反应条件下,即可以为生化系统提供更多的SCOD,又可以避免系统过高的N、P负荷[10]

    本研究在温度维持30 ℃,不调控pH下,选取了2种超磁分离后污泥(R1、R2)、剩余污泥(W1、W2),设置R1、W1为一组,R2、W2为一组,进行了超磁分离污泥、混合污泥以及剩余污泥3种不同类型污泥水解酸化的对比研究,其中混合污泥为超磁分离污泥以及剩余污泥按不同比例混合后的污泥(5组)。探究了污泥性质的差异对水解酸化及酸化产物组分的影响,为污水厂通过污泥产酸发酵获得碳源进行污泥种类的选择提供思考。

    R1、W1分别为污水处理厂停产前超磁分离污泥以及含水率为80%的脱水污泥;R2、W2分别为污水处理厂停产后超磁分离污泥以及某强化生物除磷(EBPR)中试工艺的二沉池中的剩余污泥。其中R1所用污水取自东坝污水处理厂细格栅之后,R2所用污水取自污水处理厂进水井(粗格栅之前)。实验前,将W1用蒸馏水稀释,将W2在4 ℃下浓缩24 h,然后排出上清液。以期达到与超磁分离污泥相似的VSS。实验前,取1 d内不同时段的污泥,混合后接种。4种污泥特征(至少经过3次重复测定取平均值),结果见表1。R1、W1、R2、W2的初始pH为7.55、7.68、6.85和6.91,含水率为0.984 7、0.982 2、0.968 3和0.977 2。投加比例见表2(1~7号投加的比例以剩余污泥的体积和VSS计,其中1号为超磁分离污泥,7号为剩余污泥,2~6号为投加了不同比例的剩余污泥,投加比例见表2)。

    表 1  4种污泥的主要理化指标
    Table 1.  Main physical and chemical indicators of four types of sludge
    污泥类型 TCOD SCOD SS VSS -N TN TP
    R1 14 004.3 388.63 16 280 9 980 26.86 35.55 0.97
    W1 13 476.3 32.10 23 900 15 240 0 1.95 1.09
    R2 36 270.3 444.42 32 480 18 350 36.025 48.33 1.74
    W2 25 893.8 208.76 22 980 15 700 17.092 33.24 42.27
     | Show Table
    DownLoad: CSV
    表 2  实验设计污泥投加量
    Table 2.  Experimental designed sludge dosages
    污泥类型 1号 2号 3号 4号 5号 6号 7号
    R1、W1(以体积计) 0 4 8 12 16 20 100
    R1、W1(以VSS计) 0 6.1 12.2 18.3 24.4 30.5 100
    R2、W2(以体积计) 0 8 16 24 32 40 100
    R2、W2(以VSS计) 0 6.8 13.6 20.5 27.4 34.2 100
     | Show Table
    DownLoad: CSV

    超磁分离污泥水解酸化的批次实验在恒温培养箱中进行,实验装置如图1所示,采用7个2 L的反应器,接种污泥体积为1.8 L。实验开始前曝氮气3 min以驱除反应器中的氧气,然后使用橡胶塞密封,橡胶塞上开2个孔,分别是氮气袋,以及取样口,反应器采用磁力搅拌器搅拌。

    图 1  实验装置示意图
    Figure 1.  Schematic diagram of the test device

    本研究在首创东坝污水处理厂现场进行,每天早晚各取反应器的出水进行相关指标的测定。由于水解消化后污泥脱水性能变差,因此,各指标测定前需要对样品进行预处理。预处理主要包括离心及过滤2个过程。离心采用100 mL的离心管,设置转速为5 000 r·min−1,离心45 min。然后将上清液用0.45 μm的微孔滤膜过滤,去除上清液中小颗粒物质,避免阻塞测定仪器并确保测量精度。

    常规分析参考水和废水监测分析方法,其中TCOD、SCOD采用重铬酸钾法,TN采用过硫酸钾氧化紫外分光光度法,TP采用过硫酸钾氧化钼酸铵分光光度法,SOP采用钼酸铵分光光度法,NH+4-N采用纳氏试剂光度法,VSS和SS采用重量法[11]。pH采用HACH HQ40d测定仪测定。VFAs采用瑞士万通883型离子色谱仪测定。

    污泥的水解特征可以用SCOD浓度的改变来表示[9]。2种剩余污泥在不同接种比例下对超磁分离污泥水解酸化的影响如图2所示。从图2(a)图2(b)可见,2种超磁分离污泥(R1、R2)自然水解产生的SCOD均在第4天达到峰值,分别为1 118.68 mg·L−1和2 063.50 mg·L−1;虽然两者水解得到的SCOD不同,但是从图2(c)可以看出,其SCOD/VSS的变化规律是一致的,最高值均出现在第4天,为110 mg·g−1。说明2种超磁分离后的污泥水解产酸的效果基本是一致的。

    图 2  不同比例的剩余污泥对水解程度的影响
    Figure 2.  Effect of different proportions of excess sludge on hydrolysis

    剩余污泥(W1、W2)自然水解产生的SCOD均在第7天达到峰值,分别为1 599.88 mg·L−1和4 954.80 mg·L−1。从图2(a)可以看出,2号和3号的SCOD最大值均出现在第4天,分别为1 196.80 mg·L−1与1 248.40 mg·L−1;4号的SCOD最大值出现在第5天,为1 262.57 mg·L−1;5、6和7号的SCOD最大值均出现在第7天,分别为1 443.68、1 493.96和1 599.88 mg·L−1。随着剩余污泥比例的增加,不仅可以增加SCOD的析出量,还可以延长其达到最大值的时间;与R1&W1水解不同的是,从图2(b)可以看出,2~7号的SCOD最大值均在第7天,并且其随着接种比例的增加而增大,分别为2 435.30、2 622.70、2 668.80、3 151.00、3 423.20和4 954.80 mg·L−1。这与苏高强等[12]的研究结果相似。

    W1、W2产SCOD出现如此大的差异,推测其原因是:一方面,W1为脱完水后的污泥,其中PAM(聚丙烯酰胺)存在增加了分子间的团聚性,进而减少了发酵微生物与消化基质的接触[13],从而减少了SCOD的产量;另一方面,W2为某稳定运行的EBPR系统,污泥中微生物的含量较W1要多,水解酸化菌通过对污泥中微生物细胞壁破坏从而促使细胞内容物释放[14]

    水解酸化过程中产生的VFAs主要是由发酵产酸菌对可溶性有机物的吸收转化。实验发现,3种污泥产生的酸主要是乙酸、丙酸、正丁酸、异丁酸和正戊酸,将其乘以相应的系数换算成COD后相加,和为挥发性有机酸量[8]。在此选取R1、W1进行分析,污泥水解过程中VFAs的生成情况如图3所示。从图3可以看出,VFAs的变化规律与SCOD是一致的,均是先增大后减少的趋势。1号(超磁分离污泥)自然水解VFAs的峰值出现在第4天,为353.54 mg·L−1,与SCOD的变化趋势相同的是,混合污泥2~6号分别在第4、4、5、7和7天水解液中产生的VFAs达到最大值,分别为399.98、436.52、449.03、520.05和556.97 mg·L−1,7号(剩余污泥)自然水解产生的VFAs的峰值出现在第7天,为477.52 mg·L−1。从图3中还来可以看出,接种剩余污泥能提高VFAs的产生量,并且随着接种剩余污泥的增加,也能延长其VFAs达到峰值的时间。

    图 3  不同比例的剩余污泥对VFAs的影响
    Figure 3.  Effect of different proportions of excess sludge on VFAs

    在初始阶段污泥中易降解颗粒物质首先被水解酸化菌转化为VFAs,随着反应的进行,易降解物质被消耗完全,水解酸化菌开始利用较难降解的颗粒及大分子物质,这样导致VFAs的产速变慢[15]。从图3中可以看出:混合污泥与超磁分离、剩余污泥比较,更易酸化产VFAs。这是因为一方面混合污泥吸附大量胶体和易降解有机物,水解酸化菌能有效利用;另一方面,超磁分离污泥中虽然有机物含量很高,但多数属于慢速降解碳源;剩余污泥中的有机物主要存在其细胞内和胞外聚合物中,不经过有效预处理水解酸化菌难以利用。

    SCOD向VFAs的转化率能直接用来反应污泥的产酸效果[16]。在此选取R1、W1进行分析,从图4可以看出,在前4 d,VFAs∶SCOD均逐渐变大,混合污泥VFAs∶SCOD比值一直领先超磁分离、剩余污泥。1~7号的VFAs∶SCOD分别在第4、4、4、5、7、7和7天达到最大值分别为0.316、0.334、0.350、0.360、0.361、0.373和0.299。所以仅从VFAs∶SCOD来看:混合污泥较之于超磁分离具有较高的产酸优势;且剩余污泥接种量的增加加快了水解酸化的速率,从而加深了酸化的程度。

    图 4  不同比例的剩余污泥对VFAs:SCOD的影响
    Figure 4.  Effect of different proportions of excess sludge on VFAs: SCOD

    ELEFSINIOTI等[17]指出,反硝化优先利用乙酸,其次为丁酸(包括异丁酸和正丁酸)和丙酸,最后是戊酸(包括异戊酸和正戊酸)。CHEN等[18]发现,适宜作为除磷碳源的2种有机酸为乙酸和丙酸,从短期看乙酸作为碳源除磷效果较好,而从长期看丙酸作为碳源要比乙酸作为碳源的除磷效果好。可见SCFAs的组成情况对其作为碳源被利用具有重要的影响。

    由于超磁分离污泥SCOD在第4天即达到最大值,所以此时选取R1、W1进行分析,结果如图5所示。实验中污泥水解酸化主要生成5种挥发性脂肪酸,分别为乙酸、丙酸、正丁酸、异丁酸和正戊酸。超磁分离污泥中5种酸的含量大小为乙酸>正戊酸>正丁酸>异丁酸>丙酸,而剩余污泥种5种酸的含量大小为乙酸>丙酸>正戊酸>正丁酸>异丁酸。混合污泥中随着剩余污泥占比的增加,丙酸和异丁酸的含量也有不同程度的增加,正丁酸出现了下降的趋势,而正戊酸的变化不大。从图5中易看出,各种污泥产VFAs中,乙酸均具有明显优势。这与苏高强等[9]、刘绍根等[1]、吴昌生等[19]的研究结果是一致的。乙酸之所以占比例最高,其主要原因为:一方面,水解产物被产酸菌降解为乙酸,且乙酸可以直接从碳水化合物和蛋白质的水解酸化得到;另一方面,其他的有机酸(丙酸、丁酸或戊酸等)在某些胞内酶的作用下也可进一步生成乙酸[20]

    图 5  VFAs各组分所占百分比
    Figure 5.  Percentage of VFAs components

    超磁分离污泥以及剩余污泥中含有大量的蛋白质,所以水解酸化过程中除了有VFAs、SCOD等有机物溶出以外,还会伴随着N元素的释放。本研究主要以NH+4-N和TN为考察对象。以往对于污泥厌氧发酵的研究中,都出现了不同程度的N元素的释放[1, 9, 10, 19]。对于R1、W1,由图6(a)可知,3种不同的污泥的NH+4-N都呈现出了逐渐增长的趋势。并且随着剩余污泥接种量的增加,NH+4-N的增加量也越大。反应进行到第4天时,1~7号的增加量分别为78.79、85.97、91.11、94.68、97.28、115.32、115.91 mg·L−1

    图 6  不同比例的剩余污泥对N元素的影响
    Figure 6.  Effect of different proportions of excess sludge on N element

    对于R2、W2,由图6(b)可知,3种不同的污泥呈现出了与R1、W1一样的变化规律,不同于R1、W1的是,其NH+4-N的增加量更大。第4天时1~7号NH+4-N的增加量分别为127.34、147.56、153.53、176.34、206.19、244.41、399.83 mg·L−1。由于剩余污泥主要是由一些活性生物絮体组成,故含有较多的蛋白质,蛋白质水解能释放出大量的氨氮。

    由于系统中的TN主要是以NH+4-N的形式存在的,所以从图6(c)图6(d)中可以看出,TN具有和NH+4-N相似的变化规律。剩余污泥接种量的增加加快了N元素的溶出,含有大量氮元素的水解酸化液若投加到脱氮系统中,势必是增加系统的N负荷。因此,剩余污泥的接种量应该综合考虑氮元素的释放对于整个系统后续的脱氮除磷的影响。

    污泥的厌氧消化过程中,随着污泥的解体和细胞的破壁,会有大量的磷释放到水解酸化液中。如果将水解酸化液直接用于脱氮除磷的碳源,会增加后续处理的磷负荷。所以,在此之前都会进行前处理,对氮磷进行部分回收。因此,监测P的溶出情况很有必要[21]

    在以往对于污泥水解酸化的研究中,随着时间的延长,都在不同程度上伴随着磷元素的析出。吴昌生等[19]在对碱预处理絮凝污泥水解酸化影响的研究中发现:在25 ℃时,磷酸盐浓度在第480 min达到峰值,为7.65 mg·L−1;在35 ℃时,在第480 min达到峰值,为15.23 mg·L−1。苏高强等[9]发现混合污泥厌氧发酵在第6天时磷酸盐的释放量为120 mg·L−1。由于超磁分离在污水处理前端就已经去除了系统中绝大多数的磷酸盐,减轻了后续的处理压力,所以对于超磁分离污泥的水解酸化,并不希望有P元素的析出。

    对比2种超磁分离污泥(R1、R2)P的释放情况,由图7可知,不管是TP还是SOP,其值较初始值都没有较大的变化,并没有P的析出(其中7号的浓度均为右侧坐标轴的数值)。推测可能是由于超磁分离污泥中有PAC(聚合氯化铝),抑制了磷酸盐的释放。对比两种剩余污泥(W1、W2)的TP,由图7(b)可知,TP的浓度在前5 d逐渐升高,第5天达到峰值,为24.15 mg·L−1,此后逐渐降低。由图7(a)可知,2~6号TP的浓度稳定在1~2 mg·L−1,并没有很明显的磷的析出;由图7(d)可以看出,TP的浓度在第3天即达到峰值,为385.11 mg·L−1,此后浓度稳定在390 mg·L−1左右,由图7(c)可知,2~6号TP的浓度在3 d后分别稳定在4.31、9.61、16.96、32.81、57.50 mg·L−1左右。2种剩余污泥释磷情况有巨大的差异,推测其原因是:W1来源的东坝污水处理厂采用前端化学除磷工艺,所以污泥中几乎没有P的富集;而W2取自某稳定运行的EBPR中试实验的二沉池污泥,其出水能稳定满足京标B甚至京标A出水标准,因此,其二沉池中污泥富集了大量的磷酸盐,污泥水解酸化时,在厌氧条件下导致了剩余污泥中的聚磷菌的释磷。单从P元素的释放情况来看,W2显然不适合用作接种污泥。

    图 7  不同比例的剩余污泥对P元素的影响
    Figure 7.  Effect of different proportions of excess sludge on P element

    污泥水解酸化旨在获取较多可利用碳源,但同时也存在着氮元素的释放。较高的氮释放势必会增加系统的氮负荷,同时加剧对碳源的竞争,最终降低系统的脱氮效率[22, 9]。因此,在污泥水解酸化反应获得较多碳源的同时尽量减少总氮的释放,即达到较高的ΔSCOD/ΔTN值。由于超磁分离后的污泥水解产酸在第4天达到最大值,所以考察了第4天时各污泥的ΔSCOD/ΔTN值。从图8(a)可以看出,第4天时,3号的ΔSCOD/ΔTN值最大,为9.80,此时,剩余污泥的投加比例为12.2%。从图8(b)可以看出,第4天时,3号的ΔSCOD/ΔTN值最大,为9.86,此时,剩余污泥的投加比例为13.6%。由此可见,在只考虑N元素的影响时,2种剩余污泥虽然来源不同,但是其在第4天达到最大值时的污泥接种比例是相近的。综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。

    图 8  ΔSCOD/ΔTN随水解时间的变化规律
    Figure 8.  Variation of ΔSCOD/ΔTN with hydrolysis time

    1) 2种超磁分离污泥(R1、R2)自然水解产生的SCOD均在第4天达到峰值,剩余污泥(W1、W2)自然水解产生的SCOD均在第7天达到峰值,随着剩余污泥接种量的增加,混合污泥SCOD的析出量也逐渐增加。

    2)对R1、W1进行产酸分析发现:剩余污泥接种量的增加促进了混合污泥VFAs的生成;各种污泥产VFAs中,乙酸均具有明显优势,并且会促进丙酸的累积。

    3)对VFAs:SCOD值的分析结果表明,混合污泥较之于超磁分离、剩余污泥具有快速、高效的产酸优势,且剩余污泥接种量的增加加快了水解酸化的速率并且加深了酸化的程度,但是会延长其达到峰值的时间。

    4)污泥产酸发酵的同时,还存在着N元素的释放,且随着剩余污泥接种量的增加,N元素的释放更明显;对比2种剩余污泥(W1、W2),W1作为接种污泥时,并没有明显的P元素的释放,当W2作为接种污泥时,伴随着比较明显的P元素的释放。

    5)综合考虑剩余污泥对于超磁分离污泥水解酸化效果影响发现,当剩余污泥接种量W1为12.2%,W2为13.6%时,既可以为系统提供更多的SCOD,又可以避免过高的氮负荷。

  • 图 1  电动修复装置示意图

    Figure 1.  Schematic diagram of electrokinetic equipment

    图 2  土壤中重金属总去除效率

    Figure 2.  Total removal efficiencies of heavy metals in soil

    图 3  电动修复后土壤pH

    Figure 3.  Soil pH after electrokinetic remediation

    图 4  电动修复过程中电流的变化

    Figure 4.  Current change during electrokineticremediation process

    图 5  土壤室各区域金属去除率变化

    Figure 5.  Change of metal removal rate in each region of soil chamber

    图 6  修复前后土壤金属存在形态

    Figure 6.  Occurrence forms of metals in soil before and after electrokinetic remediation

  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11.
    [2] YUAN L, XU X, LI H, et al. Development of novel assisting agents for the electrokinetic remediation of heavy metal-contaminated kaolin[J]. Electrochimica Acta, 2016, 218: 140-148. doi: 10.1016/j.electacta.2016.09.121
    [3] 袁立竹. 强化电动修复重金属复合污染土壤研究[D]. 北京: 中国科学院大学, 2017.
    [4] 陈凤, 董泽琴, 王程程, 等. 锌冶炼区耕地土壤和农作物重金属污染状况及风险评价[J]. 环境科学, 2017, 38(10): 4360-4369.
    [5] 任文涛, 祝方, 张婧, 等. 阳极pH对Fe(Ⅲ)强化阴极电动修复Pb污染土壤的影响[J]. 环境工程学报, 2017, 11(11): 6184-6189. doi: 10.12030/j.cjee.201612118
    [6] RYU B G, PARK G Y, YANG J W, et al. Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil[J]. Separation & Purification Technology, 2011, 79(2): 170-176.
    [7] 陈果. 重金属污染土壤化学修复剂的研究进展[J]. 应用化工, 2017, 46(9): 1810-1813. doi: 10.3969/j.issn.1671-3206.2017.09.036
    [8] 张鹏, 杨富淋, 蓝莫茗, 等. 广东大宝山多金属污染排土场耐性植物与改良剂稳定修复研究[J]. 环境科学学报, 2019, 39(2): 545-552.
    [9] 余天红, 黎华寿. 砷污染土壤微生物修复机制及其研究进展[J]. 环境污染与防治, 2014, 36(12): 77-82. doi: 10.3969/j.issn.1001-3865.2014.12.017
    [10] PROBSTEIN R F, HICKS R E. Removal of contaminants from soils by electric fields[J]. Science, 1993, 260(5107): 498-503. doi: 10.1126/science.260.5107.498
    [11] 万玉山, 沈梦, 陈艳秋, 等. Cd污染土壤的电动修复及其强化[J]. 环境工程学报, 2018, 12(7): 2075-2083. doi: 10.12030/j.cjee.201801029
    [12] 赵书宁, 樊丽, 侯隽, 等. 复合重金属污染高岭土的电动修复[J]. 化工环保, 2017, 37(4): 481-486. doi: 10.3969/j.issn.1006-1878.2017.04.020
    [13] KIM H A, LEE K Y, LEE B T, et al. Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans[J]. Water Research, 2012, 46(17): 5591-5599. doi: 10.1016/j.watres.2012.07.044
    [14] 黄俊, 喻泽斌, 徐天佐, 等. 鼠李糖脂协助下的土壤中镉电动修复[J]. 环境工程学报, 2012, 6(10): 3801-3808.
    [15] 骆永明. 污染土壤修复技术研究现状与趋势[J]. 化学进展, 2009, 21(2/3): 558-565.
    [16] 裴冬冬, 鲁聪立, 杨韦玲, 等. 柠檬酸强化电动去除和回收污泥中的重金属[J]. 环境工程学报, 2017, 11(6): 3789-3796. doi: 10.12030/j.cjee.201609194
    [17] 丁玲, 吕文英, 姚琨, 等. 电动增强技术修复镉污染土壤及其修复机理[J]. 环境工程学报, 2017, 11(4): 2554-2559. doi: 10.12030/j.cjee.201602043
    [18] 安浩, 詹茂华, 程寒飞, 等. 乙酸强化下通电方式对电动修复受重金属污染高岭土的影响[J]. 环境工程学报, 2017, 11(9): 5283-5290. doi: 10.12030/j.cjee.201609176
    [19] 李文娟, 王平, 徐海音, 等. 不同增强剂的电动技术对土壤中镉去除及土壤酶活性的影响[J]. 环境工程学报, 2018, 12(8): 2320-2327. doi: 10.12030/j.cjee.201803231
    [20] 吴俭. 酒石酸等5种有机酸对镉锌、镉镍污染土壤清洗效果与影响因素研究[D]. 广州: 华南理工大学, 2015
    [21] 陈锋. 含水率对电动修复Cr(Ⅵ)污染高岭土的影响[J]. 北华航天工业学院学报, 2008, 18(3): 12-15. doi: 10.3969/j.issn.1673-7938.2008.03.004
    [22] 侯隽, 樊丽, 周明远, 等. 电动及其联用技术修复复合污染土壤的研究现状[J]. 环境工程, 2017, 35(7): 185-189.
    [23] 龙加洪, 谭菊, 吴银菊, 等. 土壤重金属含量测定不同消解方法比较研究[J]. 中国环境监测, 2013, 29(1): 123-126. doi: 10.3969/j.issn.1002-6002.2013.01.025
    [24] 张朝阳, 彭平安, 宋建中, 等. 改进BCR法分析国家土壤标准物质中重金属化学形态[J]. 生态环境学报, 2012, 21(11): 1881-1884. doi: 10.3969/j.issn.1674-5906.2012.11.019
    [25] 李强, 文唤成, 胡彩荣. 土壤pH值的测定国际国内方法差异研究[J]. 土壤, 2007, 39(3): 488-491. doi: 10.3321/j.issn:0253-9829.2007.03.030
    [26] 何翊, 夏登友, 辛晶, 等. 高岭石吸附水溶液中铅离子的动力学研究[J]. 环境工程学报, 2006, 7(4): 82-85. doi: 10.3969/j.issn.1673-9108.2006.04.018
    [27] GENT D B, BRICKA R M, ALSHAWABKEH A N, et al. Bench-and field-scale evaluation of chromium and cadmium extraction by electrokinetics[J]. Journal of Hazardous Materials, 2004, 110: 53-62. doi: 10.1016/j.jhazmat.2004.02.036
    [28] 蒋明琴, 金晓英, 王清萍, 等. 天然高岭土对Pb2+, Cd2+, Ni2+, Cu2+的吸附及解吸性能研究[J]. 福建师大学报(自然科学版), 2009, 25(2): 55-59.
    [29] 陈杰. 有机酸淋洗法和固化稳定化法修复重金属污染土壤研究[D]. 杭州: 浙江大学, 2015.
  • 期刊类型引用(7)

    1. 邓星亮,杨安富,杜涛,林天,吴克富,卓奕秀,董璐,吴晓晨. 海南省三座典型垃圾填埋场渗滤液及周边地下水中抗生素的污染特征研究. 环境科学研究. 2023(09): 1779-1790 . 百度学术
    2. 张犇,张瑞峰,杨川云,杨世莲. 锰镁氢氧化物碳基复合材料催化臭氧化降解亚甲基蓝. 功能材料. 2023(09): 9123-9132 . 百度学术
    3. 刘苏瑶,雷绳尾,张宏鑫,牛秋红. 地霉菌对发酵药渣中残余林可霉素的生物降解. 食品工业. 2022(04): 188-192 . 百度学术
    4. 马允. 抗生素废水处理技术研究进展. 山东化工. 2022(15): 60-62 . 百度学术
    5. 邓心悦,陈广洲,高雅伦,王铧. 基于知识图谱的制药废水处理技术研究进展. 宿州学院学报. 2022(09): 28-32 . 百度学术
    6. 王俊章,沈丽娜,申丽明,裴世荣,陆雪梅,李晓,杨秀明. 臭氧催化氧化技术应用研究进展. 山西建筑. 2020(03): 148-150 . 百度学术
    7. 印献栋,段锋. O_3/H_2O_2氧化预处理高浓度抗生素制药废水研究. 现代化工. 2020(S1): 121-123+127 . 百度学术

    其他类型引用(12)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.4 %DOWNLOAD: 1.4 %HTML全文: 81.7 %HTML全文: 81.7 %摘要: 16.9 %摘要: 16.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 77.4 %其他: 77.4 %Ashburn: 0.3 %Ashburn: 0.3 %Baoding: 0.1 %Baoding: 0.1 %Beijing: 5.9 %Beijing: 5.9 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chaoyang Shi: 0.1 %Chaoyang Shi: 0.1 %Chatuchak: 0.1 %Chatuchak: 0.1 %Chengdu: 0.5 %Chengdu: 0.5 %Chifeng: 0.1 %Chifeng: 0.1 %Chongqing: 0.1 %Chongqing: 0.1 %Dalian: 0.1 %Dalian: 0.1 %Fuzhou: 0.1 %Fuzhou: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %Guangzhou: 1.3 %Guangzhou: 1.3 %Guiyang: 0.1 %Guiyang: 0.1 %Hangzhou: 0.5 %Hangzhou: 0.5 %Hanting: 0.1 %Hanting: 0.1 %Harbin: 0.1 %Harbin: 0.1 %Hefei: 0.6 %Hefei: 0.6 %Hyderabad: 0.2 %Hyderabad: 0.2 %Jiayuguan City: 0.1 %Jiayuguan City: 0.1 %Jinan: 0.3 %Jinan: 0.3 %Jinhua: 0.2 %Jinhua: 0.2 %Jinrongjie: 0.3 %Jinrongjie: 0.3 %Kunming: 0.1 %Kunming: 0.1 %Kunshan: 0.3 %Kunshan: 0.3 %Leeds: 0.1 %Leeds: 0.1 %luohe shi: 0.1 %luohe shi: 0.1 %Mountain View: 0.2 %Mountain View: 0.2 %Nanjing: 0.1 %Nanjing: 0.1 %Nantong: 0.1 %Nantong: 0.1 %New Taipei: 0.1 %New Taipei: 0.1 %Newark: 0.3 %Newark: 0.3 %Ningbo: 0.1 %Ningbo: 0.1 %Qingdao: 0.1 %Qingdao: 0.1 %Qinnan: 0.1 %Qinnan: 0.1 %Shanghai: 1.2 %Shanghai: 1.2 %Shenyang: 0.2 %Shenyang: 0.2 %Shenzhen: 0.1 %Shenzhen: 0.1 %Shijiazhuang: 0.3 %Shijiazhuang: 0.3 %Shizishan: 0.1 %Shizishan: 0.1 %Suzhou: 0.8 %Suzhou: 0.8 %Taiyuan: 0.5 %Taiyuan: 0.5 %Taiyuanshi: 0.2 %Taiyuanshi: 0.2 %Tianjin: 0.7 %Tianjin: 0.7 %Ürümqi: 0.1 %Ürümqi: 0.1 %Wuhan: 0.3 %Wuhan: 0.3 %Xi'an: 0.3 %Xi'an: 0.3 %Xincun: 0.1 %Xincun: 0.1 %Xingfeng: 0.1 %Xingfeng: 0.1 %Xintai: 0.1 %Xintai: 0.1 %Xinzhou: 0.1 %Xinzhou: 0.1 %Xinzhuang: 0.1 %Xinzhuang: 0.1 %Xuzhou: 0.1 %Xuzhou: 0.1 %XX: 2.3 %XX: 2.3 %Yantai: 0.1 %Yantai: 0.1 %Yingchuan: 0.1 %Yingchuan: 0.1 %Yiyang: 0.1 %Yiyang: 0.1 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhengzhou: 0.4 %Zhengzhou: 0.4 %丽水: 0.1 %丽水: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 0.3 %北京: 0.3 %晋城: 0.1 %晋城: 0.1 %泉州: 0.1 %泉州: 0.1 %泰州: 0.1 %泰州: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %红河: 0.1 %红河: 0.1 %苏州: 0.1 %苏州: 0.1 %郑州: 0.1 %郑州: 0.1 %镇江: 0.1 %镇江: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他AshburnBaodingBeijingChang'anChangshaChaoyang ShiChatuchakChengduChifengChongqingDalianFuzhouGaochengGuangzhouGuiyangHangzhouHantingHarbinHefeiHyderabadJiayuguan CityJinanJinhuaJinrongjieKunmingKunshanLeedsluohe shiMountain ViewNanjingNantongNew TaipeiNewarkNingboQingdaoQinnanShanghaiShenyangShenzhenShijiazhuangShizishanSuzhouTaiyuanTaiyuanshiTianjinÜrümqiWuhanXi'anXincunXingfengXintaiXinzhouXinzhuangXuzhouXXYantaiYingchuanYiyangYunchengZhengzhou丽水兰州北京晋城泉州泰州济南海口深圳温州红河苏州郑州镇江阳泉Highcharts.com
图( 6)
计量
  • 文章访问数:  3723
  • HTML全文浏览数:  3723
  • PDF下载数:  50
  • 施引文献:  19
出版历程
  • 收稿日期:  2019-02-22
  • 录用日期:  2019-05-21
  • 刊出日期:  2019-11-15
李超, 范文瑞, 岳正波, 万章弘, 王进. 酒石酸强化重金属复合污染模拟土壤电动修复过程及机理分析[J]. 环境工程学报, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084
引用本文: 李超, 范文瑞, 岳正波, 万章弘, 王进. 酒石酸强化重金属复合污染模拟土壤电动修复过程及机理分析[J]. 环境工程学报, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084
LI Chao, FAN Wenrui, YUE Zhengbo, WAN Zhanghong, WANG Jin. Process and mechanism analysis on tartaric acid enhanced electrokinetic remediation of simulated heavy metal combined contamination soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084
Citation: LI Chao, FAN Wenrui, YUE Zhengbo, WAN Zhanghong, WANG Jin. Process and mechanism analysis on tartaric acid enhanced electrokinetic remediation of simulated heavy metal combined contamination soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2675-2681. doi: 10.12030/j.cjee.201902084

酒石酸强化重金属复合污染模拟土壤电动修复过程及机理分析

    通讯作者: 王进(1978—),女,博士,教授。研究方向:环境污染控制与修复。E-mail:sophiawj@hfut.edu.cn
    作者简介: 李超(1994—),男,硕士研究生。研究方向:重金属污染土壤修复。E-mail:1446041870@qq.com
  • 合肥工业大学资源与环境工程学院,合肥 230009
基金项目:
中央高校基本科研业务费项目(JZ2017YYPY0246)

摘要: 为提高电动修复重金属复合污染土壤的效率,通过配制重金属复合污染模拟土壤,构建电动修复实验装置,利用2因素完全随机实验设计研究了酒石酸浓度和时间对重金属去除效果的影响;采用BCR法对土壤金属赋存形态进行了分析表征。结果表明:与对照相比,以酒石酸为电解液显著提高了重金属的去除率;重金属去除率受酒石酸浓度和修复时间影响显著;以0.05 mol·L−1酒石酸为电解液修复120 h后,重金属去除效果最好,重金属总去除率为86.15%,Cu2+、Mn2+、Cd2+、Pb2+、Zn2+的去除率分别为75.67%、98.11%、85.1%、70.75%和90.9%。BCR分析表明,酒石酸有助于提高土壤中弱酸提取态重金属含量,提高了重金属的迁移性能,从而有利于电动修复过程。

English Abstract

  • 根据2014年环境保护部国土资源部公布的《土壤污染状况调查公报》,全国土壤污染状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿企业废弃地土壤环境问题突出。全国土壤总的点位超标率为16.1%,其中轻微、轻度、中度和重度污染比例分别为11.2%、2.3%、1.5%和1.1%[1]。土壤重金属主要来源是矿山开采与工农业生产等人为活动,尤其是金属矿产资源的开采、加工和利用过程[2-3]。土壤重金属污染不仅会导致粮食产量与品质下降,而且还会沿食物链富集,从而危害人体健康[4-6]

    目前,重金属污染土壤治理方法主要包括固化稳定[7]、植物修复[8]、微生物修复[9]和电动修复[10]等。其中,电动修复技术操作简单、效率高、费用低,具有较广泛的应用前景[11-14]。通过对污染土壤施加直流电场,重金属离子通过电迁移、电渗流、电泳等作用移动到电极附近区域,达到富集去除的目的[15]。电解液是影响修复效果的重要因素之一,受到了国内外学者广泛的研究和关注。

    常用的电解液包括柠檬酸[16]、酒石酸、草酸[17]、醋酸[18]、EDTA[19]和琥珀酸等。其中,柠檬酸和酒石酸对金属的溶解能力更强,也更易于通过螯合作用将其去除。酒石酸对Cd2+的去除和柠檬酸无显著差异,而对Zn2+和Ni2+的去除效果要显著优于柠檬酸。另一方面,同柠檬酸相比,酒石酸作为电解液修复过程中土壤常量元素,损失更少[20]。利用酒石酸作为电解液,通过电动修复技术处理土壤中重金属复合污染,有助于丰富重金属复合污染土壤的修复技术,对我国采矿区附近污染土壤的修复具有潜在应用价值。但是,目前对于重金属复合污染土壤的电动修复过程研究较少,同时缺乏对其赋存形态变化的影响研究。因此,本研究根据安徽铜陵矿区金属复合污染土壤的特征,配制重金属(Zn2+、Cu2+、Pb2+、Mn2+、Cd2+)复合污染高岭土,研究不同修复时间下5种重金属离子的迁移和转化情况,探究不同浓度酒石酸电解液对电动修复效果的影响,分析修复前、后重金属离子的赋存状态的变化,为电动修复技术在重金属污染土壤修复工程实际的应用提供参考。

  • 实验所用高岭土为化学纯,其余使用药品均为分析纯,实验用水为超纯水。使用金属硝酸盐配制重金属混合溶液,主要组成为1 500 mg·L−1 Cu2+、1 500 mg·L−1 Pb2+、1 500 mg·L−1 Zn2+、1 500 mg·L−1 Mn2+、150 mg·L−1 Cd2+。取400 mL重金属混合溶液加入600 g高岭土中,混合搅拌均匀后,静置4 d[2]。土壤中金属离子浓度为838.82 mg·kg−1 Cu2+、900.77 mg·kg−1 Pb2+、904.46 mg·kg−1 Zn2+、1 540.77 mg·kg−1 Mn2+、81.64 mg·kg−1 Cd2+,含水率为39%[21]

  • 实验装置如图1所示,主体材质为有机玻璃,分为土壤室与电解液室2个部分。装置总体尺寸为370 mm×100 mm×100 mm,其中两侧阴阳电极室内部尺寸均为50 mm×90 mm×95 mm,土壤室内部尺寸为250 mm×90 mm×95 mm;电极室与土壤室之间设置隔板,隔板布满直径5 mm的细密孔,隔板外包裹250目筛布,保证电解液可通过而土壤不能通过。采用φ5 mm×100 mm的石墨棒作为阴阳电极。

  • 取配制好的模拟土壤800 g均匀平铺于土壤室底部,向两侧电解液储存器中各加入500 mL电解液,实验过程中保持电解液液面与土壤土面平齐。开启直流电源,施加恒定直流电压,使土壤室内电压梯度为1 V·cm−1[22],并记录实验过程电流变化。采用完全随机实验设计,考察反应时间(12、24、48、72、96、120 h)和酒石酸浓度(0.05、0.1、0.2 mol·L−1)对土壤电动修复重金属修复效率的影响。如图1所示,实验结束后,将土壤均分为5份,标记为S1、S2、S3、S4、S5,测定土壤pH与重金属含量。以0.05 mol·L−1酒石酸为电解液电动修复120 h后土壤样品为代表,对金属赋存形式进行分析研究。

  • 土壤样品采用电热板消解法进行预处理,然后利用火焰原子吸收光谱法测定金属离子浓度[23];采用BCR连续提取法测定金属赋存形态[24];取10 g土壤,按照土水质量比1∶2.5混合,搅拌静置后测量pH[25]

    重金属去除率计算如式(1)所示,重金属总去除率计算如式(2)所示。

    式中:R为重金属去除率;QP分别为修复前后土壤重金属含量,mg·kg−1R为重金属总去除率;i=1, 2, 3, 4, 5代表5种金属。

  • 图2所示,以纯水为电解液时,重金属总去除率较低。这主要是由于,高岭土对金属离子具有吸附性[26],限制了其迁移能力;同时阴极区产生的OH与金属结合形成氢氧化物沉淀,进一步降低了金属移动能力。对照组在修复时间为12 h时金属去除率最高,延长修复时间导致去除率下降。这主要是由于,修复时间为12 h时,靠近阴阳电解室的土壤与纯水接触,金属离子主要通过扩散进入阴阳极电解液;提高作用时间,在电迁移作用下,阳极电解液中金属阳离子重新进入土壤室向阴极侧迁移,反而导致金属总去除率降低。

    与对照相比,添加酒石酸明显提高了重金属总去除率。酒石酸作为电解液能够降低土壤pH,减少金属氢氧化物的生成。酒石酸也能够与金属离子发生配位作用,降低土壤吸附作用,增强其迁移能力[17]。酒石酸浓度为0.05 mol·L−1时,金属总去除率高于0.1 mol·L−1和0.2 mol·L−1。这主要是由于,酒石酸浓度提高使得体系内呈电中性的金属-有机酸化合物含量升高,从而限制了金属的电迁移[3]

  • 以0.05 mol·L−1酒石酸作为电解液不同时间电动修复后各区域土壤pH分布如图3所示。电动修复反应中,电解室发生水的电解反应,使阳极电解液pH下降,阴极电解液pH升高,H+、OH在电场力作用下发生迁移,在土壤室内形成酸性带与碱性迁移带[27]。本体系土壤初始pH为5.74,修复过程中土壤pH均处于酸性环境。修复12 h时,电解反应时间较短,阴极产生OH较少,电解液pH变化较小。阴阳极酸性电解液进入土壤室,使S1~S5整个区域土壤pH均下降,且pH从S1区域到S5区域逐渐降低。延长通电时间,阴极电解室中产生大量OH,阴极电解液pH升高,OH向阳极侧迁移,S1区域的H+不断被中和,使土壤pH不断上升,在72 h时达到最大值;同时阳极电解液产生大量H+,且不断向阴极侧迁移,使S3区域到S5区域,土壤pH持续降低。修复时间达到96 h和120 h后,整个土壤室中含有大量H+,5个土壤区域pH大幅降低,S5~S1区域土壤pH为3.0~3.5,且从S1区域到S5区域呈下降趋势。

    体系内电流大小能够反映自由离子数量的多少,以电流变化判断可溶性离子的迁移情况。以0.05 mol·L−1酒石酸作为电解液不同时间电动修复实验过程中电流变化如图4所示,在开始反应4 h内,电流快速下降,之后缓慢下降,最终趋于稳定。反应初始,体系内离子多,电流较大,为230~290 mA;反应开始后4 h内,在扩散作用下,离子浓度快速下降,电流快速减小至120 mA;随实验时间延长,体系内离子浓度缓慢减小,电流缓慢下降,直至趋于平稳为90~100 mA,H+和酒石酸根离子为土壤中主要的导电离子。

  • 图5为0.05 mol·L−1酒石酸作为电解液,不同修复时间Cu、Mn、Cd、Pb、Zn等金属在土壤室不同区域迁移情况和去除率。修复时间为12 h时,所有区域5种金属含量均下降,Mn去除率为78%~81%,Cu、Cd、Pb、Zn去除率分别为39%~55%、27%~45%、32%~46%、30%~43%。靠近阴、阳极电解液侧土壤金属去除率略高于中部。这主要是由于,土壤含水率较高,电解液进入土壤区域,由于稀释与自由扩散作用,游离态的金属离子向阴阳两极电解液中扩散。随后在电场力作用下,进入阳极液的金属离子会重新进入S5区域并向S1方向迁移。通电24 h后,靠近阳极的S5区域金属去除率明显上升,均达到75%以上,其余区域去除率变化较小;随着修复过程的进行,金属向阴极侧逐渐迁移。48 h时,S2~S5区域5种金属去除率均上升达到50%以上。72 h后,5种金属S5区域的去除率均接近100%,其中S1区域中Cu、Zn、Pb、Cd含量最高,甚至Pb、Zn含量高于修复前,分别达到修复前含量的1.5倍和2倍。原因是,S1区域土壤pH较高,不利于高岭土吸附的金属离子的解吸,且金属离子形成了氢氧化物沉淀。96 h时,S2~S5区域5种金属含量继续下降,去除率持续上升。此时,S1区域pH大幅下降,Cu、Pb从高岭土上解吸,氢氧化物沉淀溶解后进入阴极电解液,Cu去除率上升至31.81%,Pb富集量下降至原来的1.25倍。实验时间为120 h时,S2~S5区域中除S2区域中Pb去除率为85.42%,其余去除率均达到93%以上。此时,金属Cu、Mn、Cd、Pb、Zn的总去除率分别为75.7%、98.1%、85.1%、70.8%、90.9%,土壤中金属污染物得到较好的去除。

    5种金属去除率差异较大,Mn在所有区域的去除率均达到90%以上,其余4种金属去除效果为Zn>Cd>Cu>Pb。这主要是由于,高岭土对不同金属的吸附与解吸附能力差异所致。有研究报道,高岭土对于Cd2+、Cu2+、Pb2+ 3种金属的吸附能力为Pb2+>Cd2+>Cu2+,解吸能力为Cd2+>Cu2+>Pb2+[28],这与本实验重金属去除率顺序相同,说明土壤对金属的吸附解吸性能也是影响着电动修复中金属离子去除效果的重要因素。

  • 土壤中金属元素赋存形态将影响环境中植物、微生物的生理生化特性,同时影响电动修复过程中金属迁移转化情况。图6为采用0.05 mol·L−1酒石酸为电解液,电动修复120 h前、后土壤金属赋存形态的变化。修复前土壤中Cu存在形式主要是弱酸提取态、可还原态与残渣态。修复后Cu在S1区域中富集,存在形态为弱酸提取态与可还原态。从S1~S5可还原态与弱酸提取态含量下降,残渣态含量上升,S4和S5区域内可还原态含量为0 mg·kg−1,在S5区域中残渣态含量为5.8 mg·kg−1,占总含量的94.7%,说明电动修复中弱酸提取态的Cu迁移率较大,且添加酒石酸可促进残渣态Cu向弱酸提取态Cu转化,这与现有研究结果[29]相一致。

    修复前土壤中Mn的赋存形式主要为弱酸提取态、可还原态、可氧化态与残渣态。修复后S1~S5中残渣态Mn含量减小;S2~S4中全部以弱酸提取态存在;在靠近阴、阳极的S1、S5区域,分别存在少量的可还原态与可氧化态。在S1和S5区域内,Mn发生了氧化还原反应,使其形态发生改变。酒石酸促进了残渣态Mn向弱酸提取态Mn转化。修复前土壤中Cd的赋存形式主要为弱酸提取态和残渣态。修复后S1中Cd仍以弱酸提取态与残渣态存在,弱酸提取态占比为94.3%,但在S2~S5中全部转变为弱酸提取态Cd,由此可见,酒石酸促进了残渣态Cd向弱酸提取态Cd转化。修复前土壤中Pb、Zn的赋存形式主要为弱酸提取态、可还原态和残渣态。修复后在靠近阴极的S1区域,存在少量的可还原态Pb与Zn。S1~S5中弱酸提取态Pb、Zn含量逐渐下降;残渣态Pb比例逐渐增大。从金属赋存形态变化趋势可知,电动修复过程中弱酸提取态金属去除率高于残渣态金属,酒石酸可促进残渣态金属向弱酸提取态转化。

  • 1)酒石酸作为电解液时,其电离产生的H+可以提供酸性条件促进土壤中金属离子的溶解,抑制金属氢氧化物沉淀的生成,且酒石酸与金属离子的螯合作用可以促进土壤颗粒表面金属的解吸,改变金属存在形态,有利于电动修复。

    2)电压梯度为1 V·cm−1,以0.05 mol·L−1酒石酸为电解液电动修复120 h后,土壤修复效果最好,重金属总去除率达到86.15%,Cu、Mn、Cd、Pb、Zn去除率分别为75.67%、98.11%、85.1%、70.75%、90.9%。

    3)弱酸提取态金属较容易迁移,残渣态较稳定,酒石酸可促进残渣态金属向弱酸提取态转化。

参考文献 (29)

返回顶部

目录

/

返回文章
返回