-
近年来,我国自然水体中砷和磷复合污染案例屡见不鲜。砷(As)及其化合物主要通过人类工农业生产及地球化学循环而进入地表及地下水中。长期饮用高砷水会对人类的生理健康造成严重的危害,故地表水砷污染导致的饮用水健康风险问题受到人们的广泛关注[1-2]。因此,世界卫生组织(WHO)、美国环境保护署(EPA)等众多组织将饮用水中的砷含量限定为10 μg·L−1以下[3-5]。此外,水体富营养化也对我国各类水体(主要是湖泊、水库及河流城市河段)造成了严重威胁,而磷是引起水体富营养化的主要因子之一[6-8]。有研究表明,环境中磷和砷存在着竞争关系,砷容易置换出磷,从而被细胞吸收导致中毒[9-10]。因此,从环境治理、资源回收等角度考虑,有必要对污染水体中的砷和磷进行控制。
在现有砷、磷去除技术中,吸附法作为较成熟的除砷及除磷方法之一,具有处理效果好、经济安全、操作简单等特点,在小城镇及农村等分散供水地区水处理技术中具有明显优势[11-12]。近年来,新型吸附剂的开发成为国内外学者的研究重点。其中,介孔材料具有均一的孔径、较大的比表面积、稳定的骨架结构和易于修饰等优点,在环境治理领域已得到广泛的运用[13-15]。目前,已有研究报道吸附法单独去除水中的磷或砷时均有良好的效果[16-17],但是,对于砷、磷共存情况下对吸附剂性能的研究还较少。因此,本研究通过镧金属掺杂对介孔材料进行改性,合成了La-MCM-41吸附剂,考察了其同步去除砷、磷复合污染的性能,以期为同步去除环境水体中砷和磷提供参考。
-
十六烷基三甲基溴化铵(C19H42BrN, CTAB)、正硅酸乙酯(C8H20O4Si, TEOS)、硝酸镧(La(NO3)3·xH2O)、磷酸二氢钾(KH2PO4)、钼酸铵((NH4)6Mo7O24)、L-抗坏血酸(C6H8O6)、酒石酸氧锑钾(C4H4KO7Sb·0.5H2O)、乙二胺四乙酸二钠(C10H14N2O8Na2)、甲酸(CH2O2)、硫脲(CH4N2S)、氢氧化钠(NaOH)均为分析纯。
-
本研究模板剂采用十六烷基三甲基溴化铵(CTAB),硅源采用正硅酸乙酯(TEOS),并按照TEOS∶CTAB∶NaOH∶H2O = 1∶0.1∶0.24∶100的摩尔配比进行实验。具体步骤:将NaOH溶于去离子水中,加入相应量的CTAB,36 ℃下磁力搅拌至溶液澄清,剧烈搅拌下逐滴加入TEOS;调节溶液pH = 9~11,混合体系剧烈搅拌2 h,将所得乳白色凝胶转入聚四氟乙烯晶化反应釜中,120 ℃下晶化24 h;取出冷却至室温,过滤、洗涤、干燥,得MCM-41原粉;将其置于马弗炉中,升温至550 ℃,焙烧6 h,制得MCM-41介孔材料。
-
本研究模板剂采用十六烷基三甲基溴化铵(CTAB),硅源采用正硅酸乙酯(TEOS),硝酸镧为镧源,以La/Si = 0.03的量掺杂金属离子。具体步骤同MCM-41的制备。
-
采用X射线衍射(德国布鲁克公司D8ADVANCE型,Cu靶,扫描角度为1°~10°)对介孔材料晶体结构进行测定;采用比表面积与孔隙度吸附仪测定介孔材料改性前后比表面积、孔容及孔径分布(美国麦克公司ASAP2460型);采用扫描电子显微镜观察介孔材料改性前后微观形貌(FEI公司NANO SEM430型)。
-
分别配制As(V)、
PO3−4 -P(以下简称P)浓度均为20 mg·L−1的溶液,取50 mL As(V)或P溶液倒入具塞锥形瓶中,吸附剂投加量为0.01 g,调节溶液pH为5.0。将各锥形瓶置于恒温振荡箱中,调节温度为15、25、35、45 ℃,在转速为150 r·min−1条件下,振荡24 h,反应过程中保持pH稳定。在反应结束后,取水样,过0.45 μm滤膜,采用氢化物发生-原子荧光分光光度法测定As(V)浓度,钼酸铵-抗坏血酸比色法测定P浓度 -
配制As(V)、P浓度均为20 mg·L−1的混合溶液[18-19],取50 mL混合溶液倒入具塞锥形瓶中,吸附剂投加量为0.01 g,调节溶液pH为5.0。将锥形瓶置于恒温振荡箱中,调节温度为15、25、35、45 ℃,在转速为150 r·min−1条件下,振荡24 h,反应过程中保持pH稳定。反应结束后,取水样,过0.45 μm滤膜,采用日本岛津公司ICPS-7510 PLUS电感耦合等离子体原子发射光谱仪分别测定As(V)和P的浓度。
-
图1是MCM-41及La-MCM-41的XRD衍射图。由图1可见,2组材料在小角范围内都有3个明显的衍射峰。其中,在2θ=2.2°附近有1个较强的衍射峰,对应于介孔分子筛(100)晶面;在2θ=4.0°、4.3°附近出现2个强度相对较弱的衍射峰,分别对应于介孔分子筛(110)、(200)晶面。这与已有报道[20-21]中关于介孔材料的结构特征峰位置的结果一致,说明本研究制备的MCM-41和La-MCM-41都具有长程有序的六方相介孔结构特征,掺杂镧之后的介孔材料和MCM-41具有相似的结构特性。经La改性后的MCM-41的特征峰强度有明显的减弱,而且相应衍射峰2θ角向低角度偏移,这表明,骨架中镧的引入会改变分子筛的表面结构,从而降低了材料的有序性。
-
通过N2-吸脱附测试,可以表征多孔材料孔道结构等信息。MCM-41和La-MCM-41的N2吸脱附曲线和孔径分布如图2所示。2种材料的N2吸脱附等温线均为Ⅳ型[22],属于典型的介孔材料吸附曲线,镧掺杂后也没有明显改变介孔材料的结构特征,但La-MCM-41的比表面积和孔容积都有所减小,而孔径有所增加。其中比表面积从1 193.68 m2·g−1减小到812.27 m2·g−1,孔容从0.71 cm3·g−1减小到0.64 cm3·g−1,孔径从2.38 nm增加到3.18 nm,这是因为镧掺杂后占据了部分孔道,影响了原有孔道结构[23]。
-
图3为MCM-41和La-MCM-41的扫描电镜(SEM)和X射线能谱分析图(EDS)。从图3中可以看出,MCM-41和La-MCM-41的颗粒外形均呈现颗粒状,改性并未改变介孔材料的形貌特征。对比二者发现,MCM-41介孔吸附材料颗粒粒径较小,团聚后呈现一些不规则的形状结构。La-MCM-41介孔分子筛外形轮廓粗糙,并出现了团聚后的大颗粒。改性前后EDS图也呈现出差别,改性后的吸附剂硅含量减少,同时出现镧元素,说明镧成功取代硅,掺杂到介孔材料中。
-
本研究考察了吸附剂改性前后对砷、磷吸附效果的影响,结果如图4所示。未经过改性的介孔吸附剂MCM-41对溶液中的砷、磷几乎没有吸附作用,单一吸附和同步吸附体系中砷、磷的去除率均低于2.5%。这主要是因为,未经过改性的MCM-41本身几乎不含活性位点;而经过改性的La-MCM-41吸附剂对砷、磷具有良好的吸附效果,吸附去除率大大提高。由此可见,介孔吸附材料对砷、磷吸附效果的提升是由于La元素的加入,La的加入使得吸附剂上活性吸附位点增加,故对砷、磷的去除率也提高。且与其他常用吸附剂相比(见表1),本研究的La-MCM-41对砷、磷的吸附效果更突出[24-28],表明La-MCM-41是一种能够同步去除砷、磷的良好吸附剂。
-
图5是在25 ℃条件下La-MCM-41对目标污染物的动力学吸附结果。La-MCM-41对目标污染物的吸附过程可分为2个阶段:快速反应阶段,由于溶液与吸附剂表面的浓度梯度较大,吸附剂对目标污染物的吸附量快速上升;慢速反应阶段,由于吸附剂表面位点被大量占据,目标污染物吸附量升高速度缓慢,到24 h基本达到平衡,随着平衡随着吸附时间的增加,吸附剂上的吸附点位被不断占用,吸附速率减慢从而达到平衡。从图5中还可发现,单一吸附体系中的吸附量均要高于同步吸附体系,其中,P的吸附量高于As(V)。
采用准一级和准二级动力学吸附模型对实验数据进行了拟合[29]。准一级和准二级动力学模型的数学方程如式(1)和式(2)所示。
式中:k1为准一级动力学速率常数,min−1;k2为准二级动力学速率常数,g·(mg·min)−1;t为反应时间,min;Qe为反应平衡时吸附剂对吸附质的吸附量,mg·g−1;Qt为反应时间t时吸附剂对吸附质的吸附量,mg·g−1。
结合表2及图5可看出,准一级动力学方程R2 > 0.9,准二级动力学方程R2 > 0.99,准二级动力学方程的拟合性更好,并且准二级动力学方程模拟得到的平衡吸附量更加接近于实际测定值,综合来看,La-MCM-41对As(V)、P的吸附更加符合准二级动力学模型。
采用阿累尼乌斯方程计算反应活化能[30],阿累尼乌斯方程如式(3)所示。
两边取对数改写为式(4)。
式中:K为温度为T时的反应速度常数,min−1;Ea为反应活化能,kJ·mol−1;T为热力学温度,K;R为摩尔气体常数,8.314 J·(mol·K)−1;A为指前因子。
图6是同步吸附条件下La-MCM-41对P、As(V)吸附的阿累尼乌斯方程的拟合情况。根据图6中拟合曲线的直线方程,得出活化能Ea,La-MCM-41对砷和磷的同步吸附活化能分别为27.05 kJ·mol−1和22.68 kJ·mol−1。对比二者可发现,在同步吸附条件下,La-MCM-41对As(V)的吸附活化能稍高于对P的吸附活化能。这说明La-MCM-41对As(V)的吸附需要更多的能量来越过能垒,而对P的吸附相对更容易发生。因此,在同步吸附条件下,磷更容易被吸附在La-MCM-41的位点上,在同步吸附体系中占据优势地位。
-
图7考察了25 ℃下La-MCM-41分别对不同初始浓度的As(V)、P的吸附效果。由图7可知,La-MCM-41对As(V)、P的等温吸附线呈现类似的变化过程,吸附量随着初始浓度的增加而增加,当初始浓度增大到一定程度时,吸附曲线增长速率减缓;达到平衡时,同步吸附时P的最大吸附容量可达到160.07 mg·g−1,As(V)的最大吸附容量为126.75 mg·g−1。两者吸附量的差异可能是因为砷酸根离子的分子大小比磷酸根离子大,砷酸根比磷酸根离子的直径大,因此,单位表面积的砷酸根离子的吸附量会低于磷酸根离子。上述结果与茹春云[30]的报道结果相似。
分别采用Langmuir方程和Freundlich方程[31-32]对吸附等温线进行拟合,拟合所得参数如表3所示。
式中:Ce为平衡时溶液浓度,mg·L−1;qe为平衡吸附量,mg·g−1;qm为吸附剂最大吸附量,mg·g−1;KL为Langmuir平衡常数,L·mg−1;KF为Freundlich吸附常数;1/n为浓度常数,其值越接近1,说明吸附等温线的线性程度越高,1/n值小于1,说明吸附过程属于优惠吸附。
La-MCM-41对As(V)、P的等温吸附数据拟合结果均能较好地符合Langmuir方程和Freundlich方程,除单独吸附P,吸附对Freundlich方程的拟合性更好,故推测La-MCM-41对As(V)和P的吸附介于单分子层和多分子层吸附。同时根据公式(7)可知,RL值均介于0与1之间,说明此吸附过程为有利吸附,且RL值随着浓度的增加而减小,更加说明提高砷和磷的浓度有利于吸附的进行。
式中:C0为起始砷(磷)浓度,mg·L−1;KL为Langmuir平衡常数,L·mg−1。
从表3可以看出,单一吸附体系和同步吸附体系下P的最大吸附量和KF值均大于As(V)的最大吸附量和KF值,说明La-MCM-41对P的吸附能力优于对As(V)的吸附能力。
-
1)采用水热合成法成功制备了吸附容量大,选择性较好的除砷、磷吸附剂La-MCM-41,吸附剂具有稳定的二维六方介孔结构,比表面积为812.27 m2·g−1、孔容为0.64 cm3·g−1、平均孔径为3.18 nm。
2)La-MCM-41对砷、磷的吸附能够在12 h内达到平衡。通过动力学研究分析可发现,在同步吸附体系中,La-MCM-41对2种污染物质的吸附能力具有一定的差距,其对磷的吸附能力比砷强,磷在同步吸附中占据优势,该过程符合准二级动力学模型。
3)采用Langmuir和Frreundlich方程对等温吸附数据进行拟合分析发现,La-MCM-41对磷、砷的吸附过程介于单分子层与多分子层之间,且在2种体系中n值均大于1,说明La-MCM-41对磷、砷的吸附均为优惠型吸附。相比单一吸附体系,同步吸附体系中La-MCM-41对2种离子的饱和吸附量均有不同程度的降低,其中As(V)吸附量下降较多。
镧改性介孔材料对砷、磷的吸附
Adsorption of phosphorus and arsenic on La-modified mesoporous materials
-
摘要: 为探究在复合污染条件下介孔吸附材料对砷、磷的去除效果,通过水热合成法制备镧金属改性介孔吸附材料(La-MCM-41),采用X-射线衍射(XRD)、比表面积测定(BET)、扫描电镜(SEM)等分析方法对改性前后的介孔吸附剂进行了表征;研究了介孔吸附剂在不同吸附体系中对砷、磷的降解效果、等温线及动力学。结果表明:La-MCM-41仍具有长程有序的六方相介孔结构,BET比表面积、总孔容均减小,平均孔径有所增加;介孔吸附剂在单独吸附体系下对砷、磷的吸附量大于同步吸附体系,且均符合二级反应动力学。通过分析可知,在2种体系下,改性后的介孔吸附剂极大地提高了对砷、磷的吸附量,是一种经济高效的吸附材料。Abstract: In this study, La doped mesoporous material (La-MCM-41) was synthesized through the hydrothermal method and used to remove arsenic and phosphorus under combined pollution conditions. The X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscope (SEM) were employed to characterize the pristine mesoporous absorbent and La-MCM-41. In different systems, the arsenic and phosphorus adsorption capacity, isotherm and kinetics of by La-MCM-41 were studied. The results show that compared with pristine mesoporous absorbent, La-MCM-41 maintained a long range-ordered hexagonal mesoporous structure, and its BET specific surface area and total pore volume decreased, while its average pore diameter increased. Moreover, the adsorption capacity of arsenic or phosphorus in adsorption single system by La-MCM-41 was greater than that in the synchronous adsorption system, and both adsorption systems could be well described by the second order kinetics. As a cost-effective adsorbent of the modified mesoporous material, its adsorption capacity of arsenic and phosphorus was greatly improved under two systems.
-
Key words:
- mesoporous materials /
- arsenic /
- phosphorus /
- synchronous adsorption
-
石油开采、运输、炼制及含油污水处理过程中会产生大量的含油固废。根据国务院发布的《全国土壤污染状况调查公报》[1],在已调查的13个采油区的494个土壤点位中,超标点位占23.6%,主要污染物为石油烃和多环芳烃。据统计,我国每年新增含油污泥约5×106 t,但含油污泥的实际处置率却不到20%;同时,存量含油污泥规模已超1.59×108 t [2]。大量的含油固体废物未能及时处理而随意堆放或掩埋,不仅会占用大量土地资源,而且会对周围的土壤、水体和空气都造成污染。因此,对含油固废进行无害化处置十分必要和迫切。
传统的含油固废处理技术主要包括溶剂萃取法、调质分离法、热洗涤法、焚烧法、热脱附法以及生物处理法等[3-7]。其中,溶剂萃取法萃取剂用量大,处理成本高,存在溶剂损耗问题;调质分离法占地面积大、处理效果受含油固废来源影响大;热洗涤法主要适用于砂石为主的含油固废处理,且污水、污泥量大;焚烧法、热脱附法能耗高、设备投资高;而生物处理法处理周期长、菌种难以培养,对石油烃重度污染土壤/油泥适用性差,实际应用较少。以上技术中,处理后油泥只能用于油田井场内铺路等用途,普遍无法将污染介质处置到第一类建设用地标准。因此,迫切需要一种绿色节能、处理效果彻底的石油烃重度污染土壤/油泥处置技术。
阴燃是自然界中广泛存在的缓慢无焰自持燃烧现象。爱丁堡大学的学者于2005年最先提出将其工程化应用于有机污染介质的治理[8];其技术原理是,利用热值较高的有机污染物为能源,通过向污染物料中注入空气,在低能状态下点燃引起污染物的自持燃烧,然后利用污染物自身的燃烧热能引发周边污染区域的持续燃烧,从而实现污染物的去除。与传统的含油固废处理技术相比,工程化阴燃技术具有处理能耗低、应用范围广、安全高效、处理灵活、可模块化设计等优点。
根据处置场所的不同,工程化阴燃技术可分为原位和异位应用。目前,国外在实验室研究[9-14]的基础上已就原位和异位[15-17]阴燃分别开展了中试甚至大规模污染场地修复实验;而国内对工程化阴燃技术的研究大多还处于对技术可行性、影响因素及燃烧过程探究的实验室研究阶段[18-22],鲜有中试规模的实验研究报道。本研究采用异位阴燃设备分别对石油烃重度污染土壤和含油污泥进行了中试实验,以研究该技术应用于含油固废处理领域的适用性;同时,探索该技术用于大规模修复工程的运行效果和运行参数。
1. 材料与方法
1.1 实验原料
中试实验1在代号为T1的基础油和润滑油调配厂进行,该厂自2015年起已停止运营。实验对象为场地内3处不同区域的石油烃污染土壤,具体特性见表1。
表 1 中试实验1石油烃污染土壤特性Table 1. Characteristics of petroleum hydrocarbon-contaminated soil of pilot study 1污染土壤来源 土壤质地 污染土壤与地下水位埋深情况 石油烃质量分数/( mg·kg−1) 污染的石油类型 基础油厂区 粉砂 污染土壤位于地表以下5.5~6.0 m(地下水位以下) 6 880~12 844 Ⅰ类基础油 油罐区 砾砂 地面堆土 2 759 成品润滑油 润滑油调配厂区 粉土 污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m) 4 146 基础油及成品润滑油 中试实验2在代号为T2的油田油泥处置场进行。实验对象为场地内4处不同区域的油泥,油泥特性如表2所示。实验中加入介质对油泥进行掺混预处理,介质特性见表3。
表 2 中试实验2油泥特性Table 2. Characteristics of oil sludge of pilot study 2供试物料 含水率/% 石油烃质量分数/(mg·kg−1) #1罐底泥 20.9 159 660 #2罐底泥 21.0 123 583 #1池底泥 35.0 138 500 #2池底泥 32.8 80 340 表 3 中试实验2掺混介质特性Table 3. Characteristics of blending medium of pilot study 2供试介质 性状 含水率/% 石油烃质量分数/(mg·kg−1) 石英砂 0.8~2 mm颗粒 0 0 粉土 粉状 20~50 0 修复土 粉状 0~0.2 7~99 1.2 实验装置
阴燃中试装置由预处理系统、阴燃反应器、空气注入系统、尾气处理系统以及电气控制系统5部分组成(图1、图2)。阴燃反应在阴燃反应器中进行,反应器共2台,每台长1.6 m、宽1.6 m、高1.4 m。反应器主要由底部的气室、气室与堆料室之间的支撑格栅、中部的堆料室和顶部的集气罩构成。气室中部设有DN50空气注入管,其两侧分别均布3支U型电加热管。鼓风机连接空气注入管同时给2台反应器供气,同时,2台反应器的集气罩都与气液分离器、活性炭(GAC)罐、引风机、排气筒组成的尾气处理系统相连,以便当其中1套设备装卸料时,另1套设备仍能运行。
鼓风机和集气罩出气管路上均设置在线流量计、压力表,用于监测每个反应器的进、出气风量和压力。活性炭罐前后设取样口,用于尾气中CO、VOCs、H2S体积分数和尾气成分的检测。阴燃反应前后分别对实验物料采样,送第三方实验室检测石油烃质量分数。
1.3 实验方法
阴燃实验前,先对原料进行预处理,将原料与掺混介质按设计比例在搅拌机中搅拌至目测均匀后,从反应器上部投加到堆料室中,至物料堆高达40 cm,再在上面覆盖20 cm干净土壤用于抑制表面明火。加料完成后,在距离反应器四角30 cm×30 cm的4点及反应器正中点位(编号A、B、C、D、E)各安装1支集束热电偶(每支对自下而上0、5、15、30、50 cm料层处点位进行测温),将信号接入温场采集器。盖上集气罩,启动鼓、引风机并调节风量,开启电加热器;当数据显示阴燃启动后,关闭电加热器,保持空气持续输入以维持阴燃继续进行,反应过程产生的尾气经尾气处理系统处理后排放;反应结束并冷却后打开集气罩进行卸料。
中试实验1以T1场地内石油烃污染土壤为对象,研究不同来源石油烃污染土壤、达西空气通量对阴燃启动、燃烧锋面推进,以及污染土壤中石油烃去除率的的影响。针对部分未能实现自持阴燃的污染土壤添加辅助燃料-芥花油(化学成分主要为不饱和脂肪酸),以研究添加植物油对于此类物料维持阴燃反应的可行性。具体实验方案见表4。
表 4 中试实验1实验方案Table 4. Experimental plan of pilot study 1编号 污染土来源 土壤质地 污染土添加量/m3 芥花油添加量/L 预热阶段达西空气通量*/(cm·s−1) 阴燃阶段达西空气通量/(cm·s−1) T1-1 基础油厂区 粉砂 1.02 0 0.87~1.09 0.98~1.09 T1-2 基础油厂区 粉砂 1.02 0 0.18~0.22 0.43~1.09 T1-3 基础油厂区 粉砂 1.02 20 0.18~0.22 0.33~0.65 T1-4 油罐区 砾砂 1.02 0 0.18~0.22 0.38~0.43 T1-5 润滑油调配厂区 粉土 1.02 0 0.18~0.37 0.18~0.65 注:*达西空气通量是指垂直于气流方向的单位横截面积上的空气量,cm·s−1。 中试实验2以T2场地内不同来源油泥为对象,研究不同掺混介质(石英砂、粉土、修复土)、掺混比,以及达西空气通量对阴燃启动、燃烧锋面推进速度,以及油泥中石油烃去除率的影响。具体实验方案见表5。
表 5 中试实验2实验方案Table 5. Experimental plan of pilot study 2编号 油泥来源 掺混介质 油泥∶掺混介质(体积比) 预热阶段达西空气通量/(cm·s−1) 阴燃阶段达西空气通量*/(cm·s−1) T2−1 #1池底泥 石英砂 1∶13 0.18~0.54 0.54~0.98 T2−2 #1池底泥 粉土 1∶13 0.18~0.33 0.65 T2−3 #1池底泥 修复土** 1∶6 0.18~0.27 0.22~0.43 T2−4 #1罐底泥 修复土 1∶8 0.18 0.49~0.81 T2−5 #2池底泥 修复土 1∶4 0.18 0.22~1.09 T2−6 #2罐底泥 修复土 3∶4 0.18~0.33 0.43~1.30 T2−7 #2池底泥 修复土 1∶2 0.18~0.38 0.45~1.30 注∶*达西空气通量是指垂直于气流方向的单位横截面积上的空气量(单位∶cm·s−1);**修复土是指阴燃治理后的实验物料(掺混石英砂批次的除外),用于后一批次阴燃反应掺料。 1.4 分析方法
1)尾气分析。CO体积分数监测采用便携式CO检测仪(DX80,南京百世安安全设备有限公司);VOCs体积分数监测采用Mini RAE3000 VOC检测仪(PGM-7320,南京凯辉荣电子科技有限公司);H2S体积分数监测采用便携式四合一气体检测仪(PGM-2400,南京硕控自动化科技有限公司)。
2)含油固废中石油烃质量分数分析。中试实验1依据《土壤中总石油烃碳氢化合物检测方法-气相层析仪/火焰离子化侦测器法》(NIEA S703.62B)[23];中试实验2依据《城市污水处理厂污泥检验方法》(CJ/T 221-2005)[24]。
3)阴燃推进速度表征。阴燃推进速度的快慢采用燃烧锋面自持蔓延速率表征,计算方法见式(1);含油固废中石油烃去除率计算方法见式(2)。
燃烧锋面自持蔓延速率(m⋅d−1)=相邻热电偶间距相邻热电偶到达燃烧封面所用时间差 (1) 石油烃去除率(%)=(阴燃处理前物料石油烃质量分数-阴燃处理后物料石油烃质量分数)阴燃处理前石油烃质量分数×100% (2) 2. 结果与讨论
2.1 阴燃启动与燃烧锋面自持推进
以处理含油污泥的中试2第1批次实验T2−1为例,对阴燃启动的界定及燃烧锋面自持推进过程进行了分析。阴燃启动与否可结合料层温升及尾气浓度两方面综合判断,而判断燃烧锋面是否自持推进,则应观察外部供能停止后,沿阴燃推进方向的后续料层的温度是否相继出现相近的峰值。由实验T2−1阴燃温度曲线(图3)可看出,当电加热300 min时,热电偶数据显示,0 cm 料层越过峰值温度,5 cm料层温度快速上升至400 ℃[25]。结合尾气中CO、CO2浓度增加,判断阴燃已启动,此时关闭电加热器。在继续通入空气情况下,观察到3、4层阴燃峰值温度相继出现,反应最高温度达520 ℃,证明此时阴燃反应已实现自持推进。经计算,T2−1的燃烧锋面自持蔓延速率为2.67 m·d−1。
为直观体现燃烧锋面的推进过程,对实验T2−1阴燃过程中集束热电偶A、B、C、D、E的温度场分别进行了表征。由图4可看出,各热电偶自0 cm推进至最高料层的过程中均经历了预热升温、阴燃反应和降温3个阶段,但各点位的阴燃时长和燃烧锋面自持蔓延速率不一。这主要应与各热电偶处的污染物种类、浓度、空气流量和压力以及渗透性等因素有关[10,12]。此外,可观察到,阴燃反应主要发生在0~40 cm料层,50 cm料层并未发生阴燃(<400 ℃)。这是因为,50 cm料层为覆盖净土,无有机污染物,当燃烧锋面从40 cm扩散至50 cm时,阴燃反应逐渐终止。50 cm料层温升主要是由下部料层阴燃放热通过热传导、热辐射和热对流作用导致的。
表6为中试实验2的阴燃结果。7次实验均成功启动及自持推进。其中,阴燃启动用时最短为3 h,峰值温度最高达990 ℃,石英砂预处理组阴燃自持蔓延速率最高,为2.67 m·d−1,掺料为土的其余各批次阴燃平均自持蔓延速率为0.60 m·d−1。
表 6 中试实验2阴燃结果Table 6. Smoldering results of pilot study 2编号 油泥 掺混介质 油泥∶掺混介质(体积比) 阴燃前(混合后)石油烃质量分数/(mg·kg−1) 阴燃残渣中石油烃质量分数/(mg·kg−1) 启动/自持时长/h 峰值温度/℃ 燃烧锋面自持蔓延速率/(m·d−1) T2−1 #1池底泥 石英砂 1∶13 3 360 7 5/21 520 2.67 T2−2 #1池底泥 粉土 1∶13 7 830 7 7/26 549 0.99 T2−3 #1池底泥 修复土 1∶6 13 000 32 7/72 814 0.51 T2−4 #1罐底泥 修复土 1∶8 5 510 22 11/43 520 0.68 T2−5 #2池底泥 修复土 1∶4 16 800 11 3/61 726 0.24 T2−6 #2罐底泥 修复土 3∶4 30 600 93 4/86 858 0.6 T2−7 #2池底泥 修复土 1∶2 25 300 99 6/60 900 0.64 注∶为排除电加热及上部干净土层传热影响,燃烧锋面自持蔓延速率按5~30 cm料层温度数据计算。 2.2 达西空气通量对阴燃启动及燃烧锋面推进的影响
在中试1中,T1−1实验比对了不同达西空气通量对石油烃污染土壤阴燃反应的影响。如图5(a)所示,当初始达西空气通量维持在0.87~1.09 cm·s−1时,阴燃一直未启动;而将达西空气通量降低至0.25 cm·s−1后,反应温度短时快速上升达到峰值温度,阴燃迅速启动。由此可见,在阴燃启动阶段,空气通量不宜过高,否则会导致污染物燃烧所产生的热量被迅速带走,阴燃反应所释放的热量与热损失传热之间难以实现能量平衡[26-27]。在T1−1实验基础上,中试实验1后续批次及中试实验2各批次实验将初始达西空气通量维持在0.18 cm·s−1,适用的石油烃土壤及油泥均成功启动阴燃。与文献[16, 26]中提出的阴燃所需最低达西空气通量0.5 cm·s−1相比,本实验验证在更低的初始达西空气通量(0.18 cm·s−1)条件下也可成功启动阴燃。
T2−1实验中,当阴燃成功启动后,提高达西空气通量至0.97 cm·s−1,15、30 cm料层温升速率陡增,快速达到阴燃峰值温度(图5(b))。这说明,在一定污染物浓度下,阴燃启动后的燃烧锋面自持蔓延速率随达西空气通量的增大而增大。在该阶段,氧气的传输速率成为反应的决速步骤,增大达西空气通量将使氧含量增加,继而加快氧化反应,提升阴燃锋面的推进速率[26]。因此,通过调节空气通量可对反应进程进行有效控制。
2.3 掺混介质对阴燃处理油泥的影响
1)掺混介质物性对阴燃处理油泥的影响。中试2的T2−1、T2−2实验以#1池底泥为原料,在油泥与介质的体积比为1∶13、初始达西空气通量0.18 cm·s−1的条件下,分别对比了石英砂、粉土为掺混介质的阴燃处理效果。根据表6中所列T2−1、T2−2实验结果,采用石英砂作为掺混介质比采用粉土作为掺混介质阴燃启动用时更短(5 h<7 h),燃烧锋面自持蔓延速率更快(2.67 m·d−1>0.99 m·d−1)。这可能与石英砂2个方面的性质有关∶1)石英砂的导热性能更好(石英砂导热率10 W·m−1K−1>粉土导热率 1.67 W·m−1K−1),有利于在阴燃自持蔓延方向混合物料的传热;2)石英砂的加入有利于分散油泥,改善混合物料的渗透性,有利于阴燃反应所需氧气与油泥的更好接触。此外,添加的粉土具有一定含水率,预热阶段粉土中的水分蒸发,可带走阴燃反应部分能量,导致掺混粉土的T2−2实验温升较慢,达到阴燃启动所需温度用时更长,阴燃速率更慢[28]。
值得注意的是,T2−1实验物料的石油烃质量分数和阴燃峰值温度均较T2−2实验低,但仍能实现阴燃更快启动和推进。在对阴燃启动和推进的影响上,掺混介质本身的导热性及对物料渗透性的改善作用似乎比石油烃质量分数更重要。
2)介质掺混比例对阴燃处理油泥的影响。中试2的T2−5、T2−7实验分别以#2池底泥为实验对象,以修复土为掺混介质,考察了油泥与介质不同掺混比下的阴燃处理效果。根据表6,实验T2−7(油泥与介质的体积比为1∶2)比T2−5(油泥与介质的体积比为1∶4)阴燃自持蔓延速率更快(0.64 m·d−1 >0.24 m·d−1)。这是因为,对于修复土这类自身渗透性一般的掺混介质,随着掺混比例的提高,混合物料中石油烃质量分数下降,阴燃自持蔓延速率也随之降低。
以石英砂为掺混介质的阴燃启动和燃烧锋面自持蔓延速率最快,但石英砂成本相对较高。综合上述各实验结果,从降低运行成本和提高阴燃处理效率的角度考虑,1∶2的油泥与修复土体积比更适于工程化应用。
2.4 含油固废阴燃处理效果分析
采用石油烃去除率对含油固废的阴燃处理效果进行了表征。由表7可看出,中试实验1中成功阴燃的各批次实验(含添加芥花油批次),阴燃前污染土壤石油烃质量分数在2 759~8 301 mg·kg−1,阴燃后残渣石油烃质量分数均未检出;以检出限32.7 mg·kg−1计算,阴燃处理后石油烃去除率大于99.6%。由图6 (石油烃质量分数以对数形式表示)可看出,中试实验2中,不同污染来源、反应前石油烃质量分数在3 360~30 600 mg·kg−1的油泥,阴燃后石油烃去除率均在99.5%以上。阴燃残渣的石油烃质量分数最低达7 mg·kg−1,远低于《含油污泥处理利用控制限值》(DB61/T 1025-2016)[29]中的利用控制限值(≤10 000 mg·kg−1)及《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)[30]中第一类用地筛选值(826 mg·kg−1)。图7是T1−3实验阴燃处理前后物料图,可看出,阴燃处理后实验物料明显比实验前干燥和分散。
表 7 中试实验1阴燃结果Table 7. Smoldering results of pilot study 1编号 污染土来源 污染土壤与地下水位埋深情况 芥花油添加量/L 阴燃前石油烃质量分数(掺混后)/( mg·kg−1) 阴燃残渣中石油烃质量分数/( mg·kg−1) 启动/自持时长/h 峰值温度/℃ 自持阴燃 T1−1 基础油厂区 污染土壤位于地表以下5.5~6.0 m(地下水位以下) 0 12 844 — 56.8/0 — 否 T1−2 基础油厂区 污染土壤位于地表以下5.5~6.0 m(地下水位以下) 0 9 621 — 25.2/0 — 否 T1−3 基础油厂区 污染土壤位于地表以下5.5~6.0 m(地下水位以下) 20 8 301 ND* 22.5/10.7 665 是 T1−4 油罐区 地面堆土 0 2 759 ND 7.9/23.5 528 是 T1−5 润滑油调配厂区 污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m) 0 4 146 ND 15.8/10.7 551 是 注:*ND表示未检出。 2.5 阴燃尾气分析
尾气监测及分析结果显示,阴燃尾气中主要存在CO2、H2O等典型氧化反应气体,NOx、VOCs、SO2、H2S等有害气体组分以及CO、CH4等轻烃组分。尾气中CO、VOCs组分浓度随阴燃反应进程存在较大波动性,但总体表现出随阴燃反应温度升高而浓度增大的特性。由图8可看出,在前期料层接近阴燃峰值温度时,CO、VOCs组分浓度也达到最大值,CO组分甚至会短时超出《危险废物焚烧污染控制标准》(GB 18484-2020)[31]排放限值。这是因为,在阴燃启动初期,物料整体渗透性较低,且进风量较小,导致局部燃烧不完全[28],生成这类气体。尽管如此,峰值温度时CO/CO2比值普遍在0.10~0.35,这表明阴燃仍然以燃烧更为彻底的氧化反应为主。
对比活性炭(GAC)罐吸附前后的CO、VOCs体积分数可知,GAC对CO无明显处理效果,对VOCs的处理效果则不尽相同,中试实验1中VOCs经吸附处理后体积分数降低,但中试实验2中VOCs经吸附后体积分数降幅不明显。这应与尾气中的VOCs组分差异及GAC的吸附特性有关。一般来说,分子量较大的非极性或低极性分子能更容易被GAC吸附。因此,基于阴燃尾气特性,尾气处理措施还有待完善。
2.6 阴燃技术适用范围及补充植物油对阴燃过程的影响
中试1 研究了阴燃技术对于T1场地内3类不同来源(基础油厂区、油罐区、润滑油调配厂区)石油烃污染土壤的适用性。由表7可看出,T1−1、T1−2实验均以基础油厂区石油烃污染土壤实验对象,物料石油烃质量分数较高,分别为12 844、9 621 mg·kg−1,但阴燃均未自持进行;而T1−4和T1−5 实验分别以油罐区、润滑油调配厂区污染土壤为实验对象,物料石油烃质量分数较低,分别为2 759、4 146 mg·kg−1,却均成功自持阴燃,峰值温度分别达528、551 ℃,平均燃烧锋面自持蔓延速率分别为0.98、1.07 m·d−1。这是因为,基础油厂区污染土壤位于地下水位以下,含水率较高,因此,在阴燃最初的点火预热阶段水分蒸发用时较长,污染物I类基础油的蒸发损失大,在燃烧锋面到达之前挥发比例高[26],最终导致无法支持阴燃启动和/或自持蔓延。而油罐区污染土壤为地面堆土,润滑油调配厂区污染土壤大部分位于地下水位之上,两者含水率均不高,且污染组分主要为成品润滑油,挥发性较低,因此,阴燃能够启动及自持。
对于未能阴燃自持的基础油区厂区污染土壤,T1−3实验添加辅助燃料-芥花油对阴燃过程进行了重新考察。加入20 L芥花油后,石油烃质量分数为8 301 mg·kg−1,低于未添加芥花油的T1−1、T1−2实验,但阴燃却得以自持,自持蔓延速率为1.07 m·d−1。这是因为,加入芥花油后,芥花油燃烧产热成为主要热源,可支持阴燃反应的自持推进[26]。使用辅助燃料的目的就是使工程化阴燃技术也可以应用到自身无法自持阴燃的固废物料上,使物料中的目标污染物得到协同去除。有研究者指出,自持阴燃反应适用于如煤焦油、木馏油等低挥发性污染物的处理[32];对于汽油类有机物和氯代溶剂类挥发性污染物,也有加入植物油成功维持阴燃的报道[33]。这些与本实验观测到的现象都是一致的。
3. 结论
1)含油固废的含水率及挥发性可影响阴燃启动及自持推进。高含水率、挥发性高的含油固废难以启动及维持自持阴燃修复,但通过添加辅助燃料可实现工程化阴燃技术的成功应用。阴燃启动阶段宜采用较低空气通量,启动后增大达西空气通量有助于提升燃烧锋面推进速度。
2)工程化阴燃技术治理含油固废,石油烃去除率可达99.5%以上,含油量最低为7 mg·kg−1或未检出,远低于第一类建设用地标准。
3)不同的掺混介质及掺混比例对阴燃反应的启动用时和阴燃自持蔓延速率有较大影响。以石英砂为掺料,阴燃启动用时最短,阴燃蔓延速率最快;1∶2的油泥/修复土掺比更利于工程化应用需求。
-
表 1 不同吸附剂去除As(V)和P性能的比较
Table 1. Comparison of As(V) and P adsorption by different adsorbents
表 2 La-MCM-41同步去除As(V)和P的动力学参数
Table 2. Kinetic models parameters for simultaneous removal of As(V) and P by La-MCM-41
温度/℃ 吸附类型 准一级动力学 准二级动力学 Qe/(mg·g−1) k1 R2 Qe/(mg·g−1) k2 R2 15 同步吸附P 10.38 0.160 3 0.965 46.08 0.094 0.997 15 同步吸附As 18.87 0.175 4 0.962 34.36 0.018 0.997 25 同步吸附P 12.08 0.252 8 0.903 47.17 0.118 0.999 25 同步吸附As 17.73 0.177 7 0.945 34.48 0.028 0.997 35 同步吸附P 13.57 0.363 3 0.992 48.31 0.165 0.999 35 同步吸附As 16.07 0.179 7 0.949 34.72 0.041 0.998 45 同步吸附P 14.11 0.695 2 0.991 50 0.222 0.999 45 同步吸附As 13.77 0.180 4 0.926 34.72 0.054 0.998 表 3 La-MCM-41吸附As(V)和P的等温吸附模型参数
Table 3. Isotherm parameters for As(V) and P adsorption onto La-MCM-41
吸附类型 Langmuir Freundlich Qm/(mg·g−1) KL/(L·mg−1) R2 n KF/(mg·g−1) R2 单独吸附P 192.3 0.09 0.99 2.39 26.66 0.989 单独吸附As 163.93 0.14 0.982 2.73 24.75 0.988 同步吸附P 188.68 0.075 0.983 2.39 24.61 0.993 同步吸附As 133.33 0.075 0.979 2.38 17.3 0.987 -
[1] ZHOU Q, XI S H. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes[J]. Regulatory Toxicology and Pharmacology, 2018, 99: 78-88. doi: 10.1016/j.yrtph.2018.09.010 [2] HOMERO H F, PARIONA N, MARTIN H T, et al. Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal[J]. Journal of Molecular Structure, 2018, 1171: 9-16. doi: 10.1016/j.molstruc.2018.05.078 [3] KARDIA R M, FATIMA P R, RANGEL M R. Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite[J]. Journal of Molecular Liquids, 2018, 264: 253-260. doi: 10.1016/j.molliq.2018.05.063 [4] KOILRAJ P, TAKAKI Y, SASAKI K. Adsorption characteristics of arsenate on colloidal nanosheets of layered double hydroxide[J]. Applied Clay Science, 2016, 134: 110-119. doi: 10.1016/j.clay.2016.06.002 [5] ANTELO J, ARCE F, FIOL S. Arsenate and phosphate adsorption on ferrihydrite nanoparticles: Synergetic interaction with calcium ions[J]. Chemical Geology, 2015, 410(2): 53-62. [6] GOSCIANSKA J, PTASZKOWSKA-KONIARZ M, FRANKOWSKI M, et al. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash[J]. Journal of Colloid and Interface Science, 2018, 513: 72-81. doi: 10.1016/j.jcis.2017.11.003 [7] ZHANG M, GAO B, YAO Y, et al. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition[J]. Chemosphere, 2013, 92(8): 1042-1047. doi: 10.1016/j.chemosphere.2013.02.050 [8] BOUJELBEN N. phosphorus removal from aqueous solution using iron coated natural and engineered sorbents[J]. Journal of Hazardous Materials, 2008, 151(1): 103-110. doi: 10.1016/j.jhazmat.2007.05.057 [9] REDFIELD R J. Comment on " A bacterium that can grow by using arsenic instead of phosphorus”[J]. Science, 2011, 332(1): 1163-1166. [10] 邹强, 刘芳, 杨剑虹. 紫色土中砷、磷的吸附-解吸和竞争吸附[J]. 应用生态学报, 2009, 20(6): 1383-1389. [11] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Removal and recovery of phosphate from water using sorption[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(8): 847-907. doi: 10.1080/10643389.2012.741311 [12] DUENAS J F, AlONSO J R, REY F, et al. Characterisation of phosphorous forms in wastewater treatment plants[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 193-205. [13] TENG W, WU Z X, FAN J W, et al. Ordered mesoporous earbons and their corresponding column for highly efficient removal of microcystin-LR[J]. Energy & Environmental Science, 2013, 6(9): 2765-2776. [14] HUANG W, ZHANG Y, LI D. Adsorptive removal of phosphate from water using mesoporous materials: A review[J]. Journal of Environmental Management, 2017, 193: 470-482. [15] SUBHAN F, LIU B S, ZHANG Y, et al. High desulfurization characteristic of lanthanum loaded mesoporous MCM-41 sorbents for diesel fuel[J]. Fuel Processing Technology, 2012, 97(3): 71-78. [16] CHUTIA P, KATO S, KOJIMA T, et al. Arsenic adsorption from aqueous solution on synthetic zeolites[J]. Journal of Hazardous Materials, 2009, 162(1): 440-447. doi: 10.1016/j.jhazmat.2008.05.061 [17] VASUDEVAN S, LAKSHMI J. The adsorption of phosphate by graphene from aqueous solution[J]. RSC Advances, 2012, 2(12): 5234. doi: 10.1039/c2ra20270k [18] 何素芳. 铝改性SBA-15介孔材料在砷吸附去除中的应用及吸附机理[D]. 昆明: 昆明理工大学, 2015. [19] ZHANG J, SHEN Z, SHAN W, et al. Adsorption behavior of phosphate on lanthanum(III)-coordinated diamino-functionalized 3D hybrid mesoporous silicates material[J]. Journal of Hazardous Materials, 2011, 186(1): 76-83. doi: 10.1016/j.jhazmat.2010.10.076 [20] ZHAN W C, LU G Z, GUO Y L, et al. Synthesis of Ln-doped MCM-41 mesoporous materials and their catalytic performance in oxidation of styrene[J]. Journal of Rare Earths, 2008, 26(1): 59-65. doi: 10.1016/S1002-0721(08)60038-1 [21] YANG J P, CHEN W Y, SHEN D K, et al. Controllable fabrication of dendritic mesoporous silica-carbon nanospheres for anthracene removal[J]. Journal of Materials Chemistry A, 2014, 2(29): 11045-11048. doi: 10.1039/c4ta01516a [22] 王宇红, 袁联群, 俞磊, 等. 镧、钒取代MCM-41分子筛的结构表征及其在苯酚羟基化反应中的催化性能[J]. 化工学报, 2010, 61(10): 2565-2572. [23] LI X, LI B, XU J, et al. Synthesis and characterization of Ln-ZSM-5/MCM-41 (Ln = La, Ce) by using kaolin as raw material[J]. Applied Clay Science, 2010, 50(1): 81-86. doi: 10.1016/j.clay.2010.07.006 [24] 张芙蓉. 砷磷在铁锰/铝锰复合氧化物表面的同步吸附特性及竞争作用规律[D]. 咸阳: 西北农林科技大学, 2017. [25] ZHU N, YAN T, QIAO J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization[J]. Chemosphere, 2016, 164: 32-40. doi: 10.1016/j.chemosphere.2016.08.036 [26] 曹秉帝, 徐绪筝, 王东升, 等. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报, 2016, 10(5): 2321-2328. [27] LEDUC J F, LEDUC R, CABANA H. Phosphate adsorption onto chitosan-based hydrogel microspheres[J]. Adsorption Science & Technology, 2014, 32(7): 557-570. [28] LIU J, QI Z, CHEN J, et al. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber[J]. Chemical Engineering Journal, 2013, 215(2): 859-867. [29] 王宇, 高宝玉, 岳文文, 等. 改性玉米秸秆对水中磷酸根的吸附动力学研究[J]. 环境科学, 2008, 29(3): 703-708. doi: 10.3321/j.issn:0250-3301.2008.03.027 [30] 茹春云. 典型阴离子在纳米铁表面的竞争吸附模型研究[D]. 北京: 中国地质大学, 2013. [31] MALEKIAN R, ABEDI-KOUPAI J, ESLAMIAN S S, et al. Ion-exchange process for ammonium removal and release using natural Iranian zeolite[J]. Applied Clay Science, 2011, 51(3): 323-329. doi: 10.1016/j.clay.2010.12.020 [32] TANG D, ZHANG G. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283: 721-729. doi: 10.1016/j.cej.2015.08.019 -