[1] ZHOU Q, XI S H. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes[J]. Regulatory Toxicology and Pharmacology, 2018, 99: 78-88. doi: 10.1016/j.yrtph.2018.09.010
[2] HOMERO H F, PARIONA N, MARTIN H T, et al. Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal[J]. Journal of Molecular Structure, 2018, 1171: 9-16. doi: 10.1016/j.molstruc.2018.05.078
[3] KARDIA R M, FATIMA P R, RANGEL M R. Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite[J]. Journal of Molecular Liquids, 2018, 264: 253-260. doi: 10.1016/j.molliq.2018.05.063
[4] KOILRAJ P, TAKAKI Y, SASAKI K. Adsorption characteristics of arsenate on colloidal nanosheets of layered double hydroxide[J]. Applied Clay Science, 2016, 134: 110-119. doi: 10.1016/j.clay.2016.06.002
[5] ANTELO J, ARCE F, FIOL S. Arsenate and phosphate adsorption on ferrihydrite nanoparticles: Synergetic interaction with calcium ions[J]. Chemical Geology, 2015, 410(2): 53-62.
[6] GOSCIANSKA J, PTASZKOWSKA-KONIARZ M, FRANKOWSKI M, et al. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash[J]. Journal of Colloid and Interface Science, 2018, 513: 72-81. doi: 10.1016/j.jcis.2017.11.003
[7] ZHANG M, GAO B, YAO Y, et al. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition[J]. Chemosphere, 2013, 92(8): 1042-1047. doi: 10.1016/j.chemosphere.2013.02.050
[8] BOUJELBEN N. phosphorus removal from aqueous solution using iron coated natural and engineered sorbents[J]. Journal of Hazardous Materials, 2008, 151(1): 103-110. doi: 10.1016/j.jhazmat.2007.05.057
[9] REDFIELD R J. Comment on " A bacterium that can grow by using arsenic instead of phosphorus”[J]. Science, 2011, 332(1): 1163-1166.
[10] 邹强, 刘芳, 杨剑虹. 紫色土中砷、磷的吸附-解吸和竞争吸附[J]. 应用生态学报, 2009, 20(6): 1383-1389.
[11] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Removal and recovery of phosphate from water using sorption[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(8): 847-907. doi: 10.1080/10643389.2012.741311
[12] DUENAS J F, AlONSO J R, REY F, et al. Characterisation of phosphorous forms in wastewater treatment plants[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 193-205.
[13] TENG W, WU Z X, FAN J W, et al. Ordered mesoporous earbons and their corresponding column for highly efficient removal of microcystin-LR[J]. Energy & Environmental Science, 2013, 6(9): 2765-2776.
[14] HUANG W, ZHANG Y, LI D. Adsorptive removal of phosphate from water using mesoporous materials: A review[J]. Journal of Environmental Management, 2017, 193: 470-482.
[15] SUBHAN F, LIU B S, ZHANG Y, et al. High desulfurization characteristic of lanthanum loaded mesoporous MCM-41 sorbents for diesel fuel[J]. Fuel Processing Technology, 2012, 97(3): 71-78.
[16] CHUTIA P, KATO S, KOJIMA T, et al. Arsenic adsorption from aqueous solution on synthetic zeolites[J]. Journal of Hazardous Materials, 2009, 162(1): 440-447. doi: 10.1016/j.jhazmat.2008.05.061
[17] VASUDEVAN S, LAKSHMI J. The adsorption of phosphate by graphene from aqueous solution[J]. RSC Advances, 2012, 2(12): 5234. doi: 10.1039/c2ra20270k
[18] 何素芳. 铝改性SBA-15介孔材料在砷吸附去除中的应用及吸附机理[D]. 昆明: 昆明理工大学, 2015.
[19] ZHANG J, SHEN Z, SHAN W, et al. Adsorption behavior of phosphate on lanthanum(III)-coordinated diamino-functionalized 3D hybrid mesoporous silicates material[J]. Journal of Hazardous Materials, 2011, 186(1): 76-83. doi: 10.1016/j.jhazmat.2010.10.076
[20] ZHAN W C, LU G Z, GUO Y L, et al. Synthesis of Ln-doped MCM-41 mesoporous materials and their catalytic performance in oxidation of styrene[J]. Journal of Rare Earths, 2008, 26(1): 59-65. doi: 10.1016/S1002-0721(08)60038-1
[21] YANG J P, CHEN W Y, SHEN D K, et al. Controllable fabrication of dendritic mesoporous silica-carbon nanospheres for anthracene removal[J]. Journal of Materials Chemistry A, 2014, 2(29): 11045-11048. doi: 10.1039/c4ta01516a
[22] 王宇红, 袁联群, 俞磊, 等. 镧、钒取代MCM-41分子筛的结构表征及其在苯酚羟基化反应中的催化性能[J]. 化工学报, 2010, 61(10): 2565-2572.
[23] LI X, LI B, XU J, et al. Synthesis and characterization of Ln-ZSM-5/MCM-41 (Ln = La, Ce) by using kaolin as raw material[J]. Applied Clay Science, 2010, 50(1): 81-86. doi: 10.1016/j.clay.2010.07.006
[24] 张芙蓉. 砷磷在铁锰/铝锰复合氧化物表面的同步吸附特性及竞争作用规律[D]. 咸阳: 西北农林科技大学, 2017.
[25] ZHU N, YAN T, QIAO J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization[J]. Chemosphere, 2016, 164: 32-40. doi: 10.1016/j.chemosphere.2016.08.036
[26] 曹秉帝, 徐绪筝, 王东升, 等. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报, 2016, 10(5): 2321-2328.
[27] LEDUC J F, LEDUC R, CABANA H. Phosphate adsorption onto chitosan-based hydrogel microspheres[J]. Adsorption Science & Technology, 2014, 32(7): 557-570.
[28] LIU J, QI Z, CHEN J, et al. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber[J]. Chemical Engineering Journal, 2013, 215(2): 859-867.
[29] 王宇, 高宝玉, 岳文文, 等. 改性玉米秸秆对水中磷酸根的吸附动力学研究[J]. 环境科学, 2008, 29(3): 703-708. doi: 10.3321/j.issn:0250-3301.2008.03.027
[30] 茹春云. 典型阴离子在纳米铁表面的竞争吸附模型研究[D]. 北京: 中国地质大学, 2013.
[31] MALEKIAN R, ABEDI-KOUPAI J, ESLAMIAN S S, et al. Ion-exchange process for ammonium removal and release using natural Iranian zeolite[J]. Applied Clay Science, 2011, 51(3): 323-329. doi: 10.1016/j.clay.2010.12.020
[32] TANG D, ZHANG G. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283: 721-729. doi: 10.1016/j.cej.2015.08.019