-
矿山开采、冶金、涂料、塑料以及电池制造业等都会产生镉废物、废渣以及镉废水,若不及时处理或处理不当,将会导致周边土壤和水体受到污染,严重情况下会造成环境失调、生态失衡等不良现象[1-4]。镉可通过食物链和呼吸系统等途径在人体蓄积,尤其是肾脏和肝,从而引发一系列的急慢性疾病,甚至癌症[3, 5]。因而,很有必要开展对含镉废水及镉污染地下水的修复与治理研究。
镉废水及镉污染地下水处理与修复的方法有生物降解法、化学沉淀法和吸附法等[6-7]。其中,吸附法由于成本低、去除效果好而得到广泛的应用[7]。吸附水中镉的主要吸附剂有羟基磷灰石、硅酸钙、聚甲醛脲醛树脂、生物炭等[6-11],但这些材料大都比较昂贵,或来源不便,或制作成本高。相比之下,我国钢渣累积量达1×109 t,具有来源广,经济实惠,且可利用成分多等优点,故将钢渣运用到地下水镉修复和镉废水处理中具有广泛的应用前景[12-15]。
此外,利用钢渣修复镉污染地下水或含镉废水的研究较少,且钢渣负载HAP(羟基磷灰石,hydroxyapatite)去除水中镉的相关报道也很少。因此,本研究将低碱度钢渣、低碱度钢渣负载HAP、高碱度钢渣和高碱度钢渣负载HAP 4种材料进行对比研究,分别从pH、反应时间和初始浓度等方面考察4种材料对镉的吸附效果,并结合SEM和XRD表征结果对镉的吸附机理进行探讨,以期为镉污染地下水修复和含镉废水处理提供参考。
2种不同碱度钢渣及其负载HAP吸附镉的比较
Comparison on cadmium adsorption by two steel slags with different alkalinities and their HAP loading products
-
摘要: 为了探明低碱度钢渣、低碱度钢渣负载HAP(羟基磷灰石,hydroxyapatite)、高碱度钢渣和高碱度钢渣负载HAP 4种材料对水溶液中Cd2+的吸附特征,采用静态批实验的方法,分别从pH、反应时间和初始浓度等方面对其进行了考察;使用电镜扫描观察和X射线衍射分析等手段,运用吸附动力学模型、吸附等温线模型对吸附过程和吸附机理进行了分析与探讨。结果表明:4种材料对Cd2+的吸附效果顺序为高碱度钢渣负载HAP>高碱度钢渣>低碱度钢渣负载HAP>低碱度钢渣,其中低碱度钢渣及其负载HAP对Cd2+的吸附性能较差,且会发生脱附现象,不宜用作Cd2+的吸附材料;高碱度钢渣及其负载HAP对Cd2+的吸附性能较好,吸附过程均符合准二级吸附动力学模型和Langmuir吸附等温线模型;吸附过程主要为吸附剂表面上的单层化学吸附,吸附作用主要为离子交换作用和化学沉淀作用;此外,高碱度钢渣及其负载HAP对Cd2+最大吸附量分别为7.65 mg·g−1和12.63 mg·g−1,相比之下,提高了60.58%,这表明高碱度钢渣负载了HAP可大幅度提高其对Cd2+的吸附容量。钢渣碱度的差异性对其吸附镉的影响较大。Abstract: In order to investigate the adsorption characteristics of Cd2+ in aqueous solution by four kinds of materials: low alkalinity steel slag, low alkalinity steel slag loaded HAP, high alkalinity steel slag and high alkalinity steel slag loaded HAP. The static batch tests were conducted to investigate the effects of pH, reaction time and initial concentration on Cd2+adsorption. Combined with scanning electron microscopy and X-ray diffraction analysis, the adsorption process and mechanism of steel slags and their HAP loading products were analyzed and discussed by using adsorption kinetic models and adsorption isotherm models. The results show that the adsorptive effect of four kinds of materials on Cd2+ was following: high alkalinity steel slag loaded HAP>high alkalinity steel slag>low alkalinity steel slag loaded HAP>low alkalinity steel slag. Among them, low alkalinity steel slag and its HAP loading product had poor performance on Cd2+ adsorption, and the desorption phenomena occurred. Thus, these two materials were not suitable adsorbents towards Cd2+. High alkalinity steel slag and its HAP loading product had good performance on Cd2+ adsorption, and the adsorption process could be well fitted by quasi-second-order adsorption kinetics model and Langmuir adsorption isotherm model. Their adsorption processes for Cd2+ were mainly a single layer chemical adsorption on the adsorbent surface, and the adsorption actions were mainly ion exchange and chemical precipitation. In addition, the adsorption capacity of Cd2+ by high alkalinity steel slag HAP loading product was 12.63 mg·g−1, which was better than that of high alkalinity steel slag(qmax=7.65 mg·g−1)with 60.58% improvement. This indicates that the adsorption capacity of Cd2+ on high basicity steel slag could be greatly elevated by HAP loading. The basicity difference of steel slag had great influence on Cd2+ adsorption.
-
Key words:
- steel slag /
- HAP /
- cadmium /
- adsorption kinetics /
- adsorption isotherm
-
表 1 2种动力学模型参数
Table 1. Kinetic parameters of two kinetic models
模型 材料 qe/(mg·g−1) k1/min−1 k2/(g·(mg·min)−1) R2 准一级动力学模型 强碱度钢渣负载HAP 16.02 0.204 2 0.856 4 强碱度钢渣 7.35 0.156 3 0.917 1 准二级动力学模型 强碱度钢渣负载HAP 13.68 0.008 9 0.984 5 强碱度钢渣 7.96 0.015 4 0.988 2 表 2 吸附等温线模型拟合参数
Table 2. Fitting parameters of adsorption isotherm model
材料 Langmuir 等温线模型 Freundlich等温线模型 qmax/(mg·g−1) b/(L·mg−1) R2 Kf/(L·g−1) n R2 强碱度钢渣负载HAP 12.85 2.534 0 0.999 7 5.741 1 2.573 0 0.784 9 强碱度钢渣 8.05 0.504 0 0.990 8 2.363 0 2.428 2 0.972 7 表 3 钢渣及其负载HAP的主要成分
Table 3. Main components of steel slags and their HAP loading products
钢渣 主要成分 2θ/(°) 晶面指数 钢渣 主要成分 2θ/(°) 晶面指数 低碱度
钢渣Ca(Al,Si)2O4 10.322 100 低碱度
钢渣负
载HAPCa(Al,Si)2O4 10.322 100 Ca2Fe2O5 11.981 141 Ca2Fe2O5 11.981 141 (Mg,Fe,Al)3-x[SiAlO5](OH)4-2x 12.527 002 (Mg,Fe,Al)3-x[SiAlO5](OH)4-2x 12.527 002 Ca3(Si3O9) 25.130 120 Ca3(Si3O9) 25.130 120 Ca2SiO4 34.115 103 CaMgSi2O6 29.599 −221 Fe3O4 35.438 311 Ca2SiO4 34.115 103 Ca(Fe,Mg)Si2O6 35.610 221 Fe3O4 35.438 311 (Mg0.5Fe0.5)2SiO4 36.227 112 Ca(Fe,Mg)Si2O6 35.610 221 FeO 42.088 200 FeO 42.193 200 Ca10(PO4)6(OH)2 31.740 211 高碱度
钢渣CaHPO4·2H2O 11.650 020 高碱度
钢渣负
载HAPCaPO3(OH)·2H2O 11.603 020 Ca2Fe2O5 11.981 020/141 Ca(SO4)·2H2O 20.731 −121 Ca(SO4)·2H2O 20.731 −121 Ca6(SiO4)(Si3O10) 31.137 116 CaSiO3 30.001 −220 Ca10(PO4)6(OH)2 31.765 211 Ca6(SiO4)(Si3O10) 31.026 116 Ca2SiO4 32.136 −121 (Ca,Fe,Mg)2SiO4 33.626 260 Ca2Fe2O5 33.455 141 Fe2O3 33.279 104 Fe2O3·2CaO 33.515 141 Ca3SiO5 33.801 205 反应后
的高碱
度钢渣CaHPO4·2H2O 11.650 020 反应后
的高碱
度钢渣
负载HAPCd5H2(PO4)4·4H2O 10.009 200 Cd(H2PO2)2 11.743 020 Ca(Al,Si)2O4 10.322 100 Cd3P5O18·16H2O 20.542 Cd(H2PO2)2 11.743 020 Cd3(PO4)2 26.955 −221 Cd3P5O18·16H2O 20.542 Cd5(PO4)3(OH) 32.291 212 CdP2 25.502 111 Ca2Fe2O5 33.408 141 Cd3(PO4)2 26.955 −221 MgFe2O4 35.413 311 Cd5(PO4)3(OH) 32.291 212 FeO 41.957 200 Ca2SiO4 33.420 260 Cd(OH)2 35.221 101 -
[1] 张晓健, 陈超, 米子龙, 等. 饮用水应急除镉净水技术与广西龙江河突发环境事件应急处置[J]. 给水排水, 2013, 49(1): 24-32. doi: 10.3969/j.issn.1002-8471.2013.01.005 [2] ZHAO X M, YAO L A, MA Q L, et al. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident[J]. Chemosphere, 2018, 194: 107-116. doi: 10.1016/j.chemosphere.2017.11.127 [3] NIDA I, TABASSUM B, ELSAYED F A, et al. Groundwater contamination with cadmium concentrations in some West U. P. Regions, India[J]. Saudi Journal of Biological Sciences, 2018, 25: 1365-1368. doi: 10.1016/j.sjbs.2018.07.005 [4] JI W C, CHEN Z Q, LI D, et al. Identifying the criteria of cadmium pollution in paddy soils based on a field survey[J]. Energy Procedia, 2012, 16: 27-31. doi: 10.1016/j.egypro.2012.01.006 [5] LIU X M, ZHANG L B, MENG J, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J]. Environmental Pollution, 2018, 239: 308-317. doi: 10.1016/j.envpol.2018.04.033 [6] BOZENA C, MIRABBOS H, ALEKSANDRA B. Impact of thermal treatment of calcium silicate-rich slag on the removal of cadmium from aqueous solution[J]. Journal of Cleaner Production, 2018, 200: 369-379. doi: 10.1016/j.jclepro.2018.07.309 [7] YANG L Y, WEN T T, WANG L P, et al. The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution[J]. Journal of Environmental Management, 2019, 231: 41-48. [8] MARIBEL S T, LOU A B, ANDRIAN C C, et al. Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution[J]. Sustainable Environment Research, 2018, 28: 326-332. doi: 10.1016/j.serj.2018.09.002 [9] MOHAMMAD H D, SAMIRA T, AHMAD P, et al. Adsorptive removal of noxious cadmium from aqueous solutions using poly urea-formaldehyde: A novel polymer adsorbent[J]. MethodsX, 2018, 5: 1148-1155. doi: 10.1016/j.mex.2018.09.010 [10] 郑刘春. 玉米秸秆及其纤维素的改性和吸附水体镉离子的机理研究[D]. 广州: 华南理工大学, 2011. [11] SONG T, LIANG J S, BAI X, et al. Biosorption of cadmium ions from aqueous solution by modified Auricularia Auricular matrix waste[J]. Journal of Molecular Liquids, 2017, 241: 1023-1031. doi: 10.1016/j.molliq.2017.06.111 [12] GUO J L, BAO Y P, WANG M. Steel slag in China: Treatment, recycling, and management[J]. Waste Management, 2018, 78: 318-330. doi: 10.1016/j.wasman.2018.04.045 [13] GUO Y C, XIE J H, ZHENG W Y, et al. Effects of steel slag as fine aggregate on static and impact behaviours of concrete[J]. Construction and Building Materials, 2018, 192: 194-201. doi: 10.1016/j.conbuildmat.2018.10.129 [14] SAXENA S, TEMBHURKAR A R. Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete[J]. Construction and Building Materials, 2018, 165: 126-137. doi: 10.1016/j.conbuildmat.2018.01.030 [15] 杨丽韫, 陈军, 袁鹏, 等. 钢渣去除废水中重金属离子的研究综述[J]. 钢铁, 2017, 52(8): 1-9. doi: 10.3969/j.issn.1673-1999.2017.08.001 [16] 潘志平. 石英砂负载羟基磷灰石的制备及其在PRB中除铀效果研究[D]. 南昌: 东华理工大学, 2016. [17] CUI H B, YI Q T, YANG X, et al. Effects of hydroxyapatite on leaching of cadmium and phosphorus and their availability under simulated acid rain[J]. Journal of Environmental Chemical Engineering, 2017, 5: 3773-3779. doi: 10.1016/j.jece.2017.07.001 [18] MA Q Y, LOGAN T J, TRAINA S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks[J]. Environmental Science & Technology, 1995, 29: 1118-1126. [19] PIYALI R, SWACHCHHA M, SUBHENDU S, et al. Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: Bench scale study[J]. Chemical Engineering Journal, 2019, 355: 510-519. doi: 10.1016/j.cej.2018.07.155 [20] ELKADY M F, MAHMOUD M M, ABD-EL-RAHMAN H M. Kinetic approach for cadmium sorption using microwave synthesized nano-hydroxyapatite[J]. Journal of Non-Crystalline Solids, 2011, 357: 1118-1129. doi: 10.1016/j.jnoncrysol.2010.10.021 [21] 覃海富, 张卫民. pH及离子强度对石英砂负载羟基磷灰石吸附锰的影响[J]. 有色金属(冶炼部分), 2018(6): 71-75. doi: 10.3969/j.issn.1007-7545.2018.06.017 [22] 惠咏薇. 利用钢渣去除水中镉的研究[D]. 南京: 南京理工大学, 2013. [23] 殷云皓. 钢渣处理酸性含铅废水的性能研究[D]. 南京: 南京理工大学, 2016. [24] XIAO X, YANG L, ZHOU D L, et al. Magnetic γ-Fe2O3/Fe-doped hydroxyapatite nanostructures as high-efficiency cadmium adsorbents[J]. Colloids and Surfaces A, 2018, 555: 548-557. doi: 10.1016/j.colsurfa.2018.07.036 [25] FENG Y, GONG J L, ZENG G M, et al. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydro-xyapatite nanoparticles as adsorbents[J]. Chemical Engineering Journal, 2010, 162: 487-494. doi: 10.1016/j.cej.2010.05.049 [26] ZHU R H. Removal of Cd2+ from aqueous solutions by hydroxyapatite[J]. Catalysis Today, 2008, 139: 94-99. doi: 10.1016/j.cattod.2008.08.011 [27] PENG S H, WANG R, YANG L Z, et al. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell[J]. Ecotoxicology and Environmental Safety, 2018, 165: 61-69. doi: 10.1016/j.ecoenv.2018.08.084 [28] EBRAHIMIA A, EHTESHAMIB M, DAHRAZMA B. Isotherm and kinetic studies for the biosorption of cadmium from aqueous solution by alhajimaurorum seed[J]. Process Safety and Environmental Protection, 2015, 98: 374-382. doi: 10.1016/j.psep.2015.09.013 [29] 潘志平, 张卫民, 高芳, 等. 羟基磷灰石去除水溶液中铀(Ⅵ)的研究[J]. 陶瓷学报, 2016, 37(3): 279-282. [30] ZHANG Z H, WANG X J, WANG H, et al. Removal of Pb(II) from aqueous solution using hydroxyapatite/calciumsilicate hydrate (HAP/C-S-H) composite adsorbent prepared by a phosphate recovery process[J]. Chemical Engineering Journal, 2018, 344: 53-61. doi: 10.1016/j.cej.2018.03.066 [31] MOBASHERPOUR I, SALAHI E, PAZOUKI M. Removal of divalent cadmium cations by means of synthetic nanocrystallite hydroxyapatite[J]. Desalination, 2011, 266: 142-148. doi: 10.1016/j.desal.2010.08.016