-
镉是联合国环境规划署提出的12种全球性的危险化学物质中位于首位的有毒重金属,控制环境中尤其是水体中的镉含量十分重要[1]。当前,去除水体中Cd2+的常用方法包括化学沉淀法、离子交换法、膜处理等,但这些方法受到操作要求高、效率低、成本高等因素的制约,难以大面积推广[2]。吸附法因其具有绿色可行、便捷有效[3]的特点已成为当前研究的一个热点,但选取廉价、高效的吸附材料仍是目前面临的难题。
生物炭是指由富炭生物质经热处理,在限氧条件下不完全燃烧生成的产物[4]。有研究[5]表明,生物炭具有比表面积巨大,表面能高等特性,这些特性决定了生物炭在吸附水体重金属方面具有巨大的潜力。当前,为了强化生物炭的吸附性能,增加其吸附容量,许多研究者通过改性的方法来增加生物炭对重金属的吸附效果。WU等[6]使用化学改性方法对椰子纤维炭进行修饰,增加其表面游离的羧基和羟基,研究结果表明,改性后生物炭的吸附容量较改性前可显著提高。马天行等[7]通过亲电芳香取代和还原反应在生物炭表面实现表面氨基化,再使用液相还原法在制备成功的氨基生物炭表面负载纳米零价铁,研究表明,制得的材料具有优良的吸附性能。王静等[8]利用活性炭与巯基乙酸的酯化反应,将巯基嫁接到活性炭上,改性后活性炭对汞的最大吸附容量为556 mg·L−1,远远优于原材料。陈维芳等[9]使用十六烷基三甲基氯化铵(CTAC)改性活性炭,结果表明,改性后活性炭对As5+的吸附能力显著提高,且在中性pH范围内,吸附效果最佳。在改性材料中,CTAB是一种价格低廉且应用范围较广的阳离子表面活性剂,由于生物炭表面多带负电荷,故CTAB通过静电吸附的作用很容易吸附于生物炭表面,同时插入材料表面的烷基基团在材料表面形成混合胶束,加大了与Cd2+的静电吸引力,从而提升了材料的吸附容量。
本研究采用十六烷基三甲基溴化铵(CTAB)作为改性剂,椰壳炭(CSC)和竹炭(BC)作为改性材料,制备改性椰壳炭(CTAB-CSC)和竹炭(CTAB-BC),运用傅里叶红外变换光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱分析(XPS)和热稳定性分析(TGA)对材料进行了表征,研究了其吸附机理,并对其进行了动力学拟合和等温吸附曲线拟合,探究了2种改性材料对溶液中Cd2+的吸附机制。
十六烷基三甲基溴化铵改性生物炭对水中镉离子吸附性能的影响
Effect of adsorption of cadmium from aqueous solution by hexadecyl trimethyl ammonium bromide modified biochar
-
摘要: 针对水体重金属污染治理问题,通过十六烷基三甲基溴化铵(CTAB)对竹炭(BC)、椰壳炭(CSC)进行改性, 采用傅里叶红外变换光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱分析(XPS)和热稳定性分析(TGA)对改性前后的材料进行了表征,探究了投加量、pH对2种改性材料吸附去除水中镉离子性能的影响,并进行了动力学方程拟合及等温吸附模型拟合,探讨了CTAB改性前后活性炭吸附水中镉离子的机理。结果表明:2种CTAB改性材料基本结构虽未改变,但提升了竹炭(BC)和椰壳炭(CSC)的吸附性能,改性后材料的饱和吸附量分别为12.56 mg·g−1(CTAB-BC)、10.71 mg·g−1 (CTAB-CSC),较改性前分别提高了111%和92%;同时,CTAB-BC、CTAB-CSC的吸附量受pH影响较大,对二者的最适pH分别为4~7、6~7;CTAB-BC、CTAB-CSC均能较好地拟合准二级动力学方程(R2CTAB-BC=0.999 9, R2CTAB-CSC=0.993 7)及Langmuir模型(R2CTAB-BC =0.970 3, R2CTAB-CSC=0.976 8)。通过分析可知,CTAB-CSC、CTAB-BC 2种材料对含镉废水均有较好的去除效果。
-
关键词:
- 十六烷基三甲基溴化铵(CTAB) /
- 活性炭 /
- 镉 /
- 吸附
Abstract: In this study, two kinds of biocarbons were prepared by modifying bamboo charcoal (BC) and coconut shell charcoal (CSC) with hexadecyl trimethyl ammonium bromide (CTAB) for heavy metal pollution control. FT-IR, SEM, XPS and TGA were used to characterize the charcoals before and after modification. The effects of dosage and pH on the adsorption performance for cadmium ion from aqueous solution by the modified biochar were investigated, and the adsorption behaviors were simulated by dynamic and isothermal adsorption models. Their corresponding adsorption mechanisms were also identified. The results showed the adsorption capacities of BC and CSC were significantly improved by modifying with CTAB, although their basic structures were not changed. The saturated cadmium ion adsorption capacities of CTAB-BC and CTAB-CSC were 12.56 mg·g−1 and 10.71 mg·g−1, which were 111% and 92% higher than those of BC and CSC, respectively. Besides, their adsorption capacities were greatly affected by pH, and the corresponding optimum pH ranges were 4~7 and 6~7, respectively. The cadmium ion adsorption by CTAB-BC and CTAB-CSC could be better fitted by quasi-secondary kinetic equations (R2CTAB-BC=0.999 9, R2CTAB-CSC=0.993 7) and Langmuir models (R2CTAB-BC = 0.970 3, R2CTAB-CSC=0.976 8). Thus, both CTAB-CSC and CTAB-BC had good performance on the treatment of wastewater containing cadmium.-
Key words:
- hexadecyl trimethyl ammonium(CTAB) /
- activated carbon /
- cadmium /
- adsorption
-
表 1 动力学拟合参数
Table 1. Kinetic fitting results
材料 准一级动力学方程 准二级动力学方程 qe/(mg·g−1) Kl/min−1 R2 qe/(mg·g−1) K2/(g·(mg·min)−1) R2 CTAB-CSC 6.18 0.004 6 0.818 2 10.10 0.001 1 0.993 7 CTAB-BC 3.60 0.003 0 0.659 6 17.54 0.005 1 0.999 9 表 2 等温吸附模型拟合参数
Table 2. Fitness of isotherm models and corresponding parameters
材料 Langmuir模型 Freundlich模型 qmax/(mg·L−1) KL/(L·g−1) R2 KF/(L·g−1) n R2 CSC 5.58 0.155 2 0.891 8 1.571 0 3.834 0 0.964 6 CTAB-CSC 10.71 0.054 7 0.976 8 3.037 2 4.608 3 0.731 6 BC 5.95 0.084 0 0.946 8 1.260 0 3.270 0 0,959 0 CTAB-BC 12.56 0.076 9 0.970 3 3.837 0 4.783 0 0.816 3 -
[1] XU M, HADI P, CHEN G, et al. Removal of cadmium ions from wastewater using innovative electronic waste-derived material[J]. Journal of Hazardous Materials, 2014, 273(3): 118-123. [2] MAHDAVINIA G R, RAHMANI Z, KARAMI S, et al. Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: Preparation, swelling behavior, and drug delivery[J]. Journal of Biomaterials Science (Polymer Edition), 2014, 25(17): 1891-1906. doi: 10.1080/09205063.2014.956166 [3] 范荣桂, 郜秋平, 高海娟. 吸附法处理废水中砷的研究现状及进展[J]. 工业水处理, 2013, 33(4): 10-12. doi: 10.3969/j.issn.1005-829X.2013.04.003 [4] SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws: Characterization and Cd(II) removal potential[J]. Ecotoxicology & Environmental Safety, 2014, 106(2): 226-231. [5] CEHUI M, TANG W Q, PASCASIE N, et al. Removal of heavy metals from sewage sludge by low costing chemical method and recycling in agriculture[J]. Journal of Environmental Sciences, 1998, 10(1): 124-130. [6] WU W, LI J, TIAN L, et al. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation[J]. Science of the Total Environment, 2017, 576: 766-774. doi: 10.1016/j.scitotenv.2016.10.163 [7] 马天行, 杨琛, 江鲜英, 等. 纳米零价铁改性氨基生物炭的制备及对Cd(Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178 [8] 王静, 陈光辉, 陈建, 等. 巯基改性活性炭对水溶液中汞的吸附性能研究[J]. 环境工程学报, 2009, 3(2): 219-222. [9] 陈维芳, 王宏岩, 于哲, 等. 阳离子表面活性剂改性的活性炭吸附砷(V)和砷(Ⅲ)[J]. 环境科学学报, 2013, 33(12): 3197-3204. [10] 江湛如, 汤媛媛, 李冰玉, 等. 磁性海藻酸铁介孔碳微球的合成及对水体中砷的去除[J]. 环境科学学报, 2018, 38(6): 2382-2392. [11] YANTASEE W, LIN Y, ALFORD K L, et al. Electrophilic aomatic substitutions of amine and sulfonate onto fine-grained activated carbon for aqueous-phase metal ion removal[J]. Separation Science and Technology, 2004, 39(14): 3263-3279. doi: 10.1081/SS-200033140 [12] CHEN Y, PAN B, LI H, et al. Selective removal of Cu(II) ions by using cation-exchange resin-supported polyethyleneimine (PEI) nanoclusters[J]. Environmental Science & Technology, 2010, 44(9): 3508-3513. [13] LIU W J, ZENG F X, JIANG H, et al. Adsorption of lead (Pb) from aqueous solution with Typha angustifolia, biomass modified by SOCl2 activated EDTA[J]. Chemical Engineering Journal, 2011, 170(1): 21-28. doi: 10.1016/j.cej.2011.03.020 [14] 张国珍, 高小波, 武福平, 等. 十六烷基三甲基溴化铵改性沸石对腐殖酸的吸附性能研究[J]. 环境污染与防治, 2016, 38(5): 12-17. [15] HUESO J L, ESPINOS J P, CABALLERO A, et al. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas[J]. Carbon, 2007, 45(1): 89-96. doi: 10.1016/j.carbon.2006.07.021 [16] ZHOU J H, SUI Z J, ZHU J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796. doi: 10.1016/j.carbon.2006.11.019 [17] WU Z, ZHONG H, YUAN X, et al. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater[J]. Water Research, 2014, 67: 330-344. doi: 10.1016/j.watres.2014.09.026 [18] LIM S F, ZHENG Y M, ZOU S W, et al. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study[J]. Environmental Science & Technology, 2008, 42(7): 2551-2556. [19] BADRUDDOZA A Z, TAY A S, TAN P Y, et al. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies[J]. Journal of Hazardous Materials, 2011, 185(2): 1177-1186. [20] BELANGER D, TOUPIN M. Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations[J]. Langmuir, 2008, 24(5): 1910-1917. doi: 10.1021/la702556n [21] ZHENG J C, FENG H M, LAM H W, et al. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 780-785. [22] TATY-COSTODES V C, FAUDUENT H, PORTE C, et al. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris[J]. Journal of Hazardous Materials, 2003, 105(1/2/3): 121-142. [23] 江美琳, 金辉, 邓聪, 等. 生物炭负载Fe3O4纳米粒子的制备与表征[J]. 农业环境科学学报, 2018, 37(3): 592-597. doi: 10.11654/jaes.2017-1266 [24] 陈镜泓, 李传儒. 热分析及其应用[M]. 北京: 科学出版社, 1985. [25] 朱恂, 李刚, 冯云鹏, 等. 重庆地区7种生物质的成分分析及热重实验[J]. 重庆大学学报, 2006, 29(8): 44-48. doi: 10.11835/j.issn.1000-582X.2006.08.012 [26] ZHAO D, YANG X, ZHANG H, et al. Effect of environmental conditions on Pb(II) adsorption on β-MnO2[J]. Chemical Engineering Journal, 2010, 164(1): 49-55. doi: 10.1016/j.cej.2010.08.014 [27] 程启明, 黄青, 刘英杰, 等. 花生壳与花生壳生物炭对镉离子吸附性能研究[J]. 农业环境科学学报, 2014, 33(10): 2022-2029. doi: 10.11654/jaes.2014.10.020 [28] DADA A O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk[J]. IOSR Journal of Applied Chemistry, 2012, 3(1): 38-45. doi: 10.9790/5736 [29] 郜礼阳, 邓金环, 唐国强, 等. 不同温度桉树叶生物炭对Cd2+的吸附特性及机制[J]. 中国环境科学, 2018, 38(3): 1001-1009. doi: 10.3969/j.issn.1000-6923.2018.03.025