城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附

高豆豆, 郭敏辉, 王侃, 于洁, 叶丁璐, 祝怡臻. 城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附[J]. 环境工程学报, 2019, 13(5): 1165-1174. doi: 10.12030/j.cjee.201810129
引用本文: 高豆豆, 郭敏辉, 王侃, 于洁, 叶丁璐, 祝怡臻. 城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附[J]. 环境工程学报, 2019, 13(5): 1165-1174. doi: 10.12030/j.cjee.201810129
GAO Doudou, GUO Minhui, WANG Kan, YU Jie, YE Dinglu, ZHU Yizhen. Adsorption of aqueous methylene blue by biochar pyrolyzed from municipal solid waste[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1165-1174. doi: 10.12030/j.cjee.201810129
Citation: GAO Doudou, GUO Minhui, WANG Kan, YU Jie, YE Dinglu, ZHU Yizhen. Adsorption of aqueous methylene blue by biochar pyrolyzed from municipal solid waste[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1165-1174. doi: 10.12030/j.cjee.201810129

城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附

  • 基金项目:

    宁波市科技计划项目2015C110001

    浙江省自然科学基金资助项目Y19E080023

    国家级高等学校大学生创新创业训练计划项目201811646019

    浙江省大学生科技创新活动计划2018R405038宁波市科技计划项目(2015C110001)

    浙江省自然科学基金资助项目(Y19E080023)

    国家级高等学校大学生创新创业训练计划项目(201811646019)

    浙江省大学生科技创新活动计划(2018R405038)

    宁波大学王宽诚基金资助项目

Adsorption of aqueous methylene blue by biochar pyrolyzed from municipal solid waste

  • Fund Project:
  • 摘要: 热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g-1。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH3+、NH2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t-1的经济效益,作为废水处理的吸附剂具有较好的应用前景。
  • 加载中
  • [1] HWANG I, KOBAYASHI J, KAWAMOTO K. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF[J]. Waste Management, 2014, 34(2): 402-410.
    [2] 罗亭. 城镇有机垃圾热解生物炭理化性质研究[D]. 重庆: 重庆大学, 2014.
    [3] 苏毅, 朱惠春, 张金亮, 等. 城市垃圾热化学转化处理技术进展与应用[J]. 工业锅炉, 2015(1): 7-14.
    [4] CHENG H F, HU Y N. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824.
    [5] CHEN D, YIN L J, WANG H, et al. Pyrolysis technologies for municipal solid waste: A review[J]. Waste Management, 2014, 34(12): 2466-2486.
    [6] ATE? F, MISKOLCZI N, BORSODI N. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties[J]. Bioresource Technology, 2013, 133: 443-454.
    [7] ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Management, 2012, 32(4): 625-639.
    [8] NAKAGAWA K, NAMBA A, MUKAI S R, et al. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes[J]. Water Research, 2004, 38(7): 1791-1798.
    [9] JIN H M, CAPAREDA S, CHANG Z Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629.
    [10] LONAPPAN L, ROUISSI T, DAS R K, et al. Adsorption of methylene blue on biochar microparticles derived from different waste materials[J]. Waste Management, 2016, 49: 537-544.
    [11] LI G L, SHEN B X, LI F K, et al. Elemental mercury removal using biochar pyrolyzed from municipal solid waste[J]. Fuel Processing Technology, 2015, 133: 43-50.
    [12] LU X W, JORDAN B, BERGE N D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques[J]. Waste Management, 2012, 32(7): 1353-1365.
    [13] FAN S S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 601-611.
    [14] 陈倩倩. 宁波市不同区分类垃圾理化特性与温室气体排放特征研究[D]. 杭州: 浙江大学, 2018.
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法: GB/T 212-2008[S]. 北京: 中国标准出版社, 2008.
    [16] GHAEDI M, NASAB A G, KHODADOUST S, et al. Characterization of zinc oxide nanorods loaded on activated carbon as cheap and efficient adsorbent for removal of methylene blue[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 986-993.
    [17] 刘雪成. 城市污泥与谷壳制备吸附剂及其对染料废水处理的研究[D]. 武汉: 武汉科技大学, 2014.
    [18] BHATNAGAR A, HOGLAND W, MARQUES M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219: 499-511.
    [19] SAKA C. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 21-24.
    [20] GUAN B H, YU J, FU H L, et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution[J]. Water Research, 2012, 46(2): 425-432.
    [21] LAURENT J, CASELLAS M, PONS M N, et al. Flocs surface functionality assessment of sonicated activated sludge in relation with physico-chemical properties[J]. Ultrasonics Sonochemistry, 2009, 16(4): 488-494.
    [22] FAN S S, TANG J, WANG Y, et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism[J]. Journal of Molecular Liquids, 2016, 220: 432-441.
    [23] LENG L J, YUAN X Z, HUANG H J, et al. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption[J]. Applied Surface Science, 2015, 346: 223-231.
  • 加载中
计量
  • 文章访问数:  3334
  • HTML全文浏览数:  3274
  • PDF下载数:  92
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附

  • 1. 宁波大学建筑工程与环境学院,宁波 315211
  • 2. 浙江大学环境工程系,杭州 310058
基金项目:

宁波市科技计划项目2015C110001

浙江省自然科学基金资助项目Y19E080023

国家级高等学校大学生创新创业训练计划项目201811646019

浙江省大学生科技创新活动计划2018R405038宁波市科技计划项目(2015C110001)

浙江省自然科学基金资助项目(Y19E080023)

国家级高等学校大学生创新创业训练计划项目(201811646019)

浙江省大学生科技创新活动计划(2018R405038)

宁波大学王宽诚基金资助项目

摘要: 热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g-1。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH3+、NH2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t-1的经济效益,作为废水处理的吸附剂具有较好的应用前景。

English Abstract

参考文献 (23)

目录

/

返回文章
返回