利用米曲霉发酵餐厨垃圾产水解酶促进污泥厌氧消化

汪刚慧, 刘宏波, 郑志永, 唐晓博, 钱明达, 刘和. 利用米曲霉发酵餐厨垃圾产水解酶促进污泥厌氧消化[J]. 环境工程学报, 2019, 13(5): 1175-1185. doi: 10.12030/j.cjee.201812176
引用本文: 汪刚慧, 刘宏波, 郑志永, 唐晓博, 钱明达, 刘和. 利用米曲霉发酵餐厨垃圾产水解酶促进污泥厌氧消化[J]. 环境工程学报, 2019, 13(5): 1175-1185. doi: 10.12030/j.cjee.201812176
WANG Ganghui, LIU Hongbo, ZHENG Zhiyong, TANG Xiaobo, QIAN Mingda, LIU He. Promoted sludge anaerobic digestion by the hydrolase produced from food waste fermentation with Aspergillus oryzae[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1175-1185. doi: 10.12030/j.cjee.201812176
Citation: WANG Ganghui, LIU Hongbo, ZHENG Zhiyong, TANG Xiaobo, QIAN Mingda, LIU He. Promoted sludge anaerobic digestion by the hydrolase produced from food waste fermentation with Aspergillus oryzae[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1175-1185. doi: 10.12030/j.cjee.201812176

利用米曲霉发酵餐厨垃圾产水解酶促进污泥厌氧消化

  • 基金项目:

    国家自然科学基金资助项目51678280

    国家水体污染控制与治理科技重大专项2015ZX07306001-05国家自然科学基金资助项目(51678280)

    国家水体污染控制与治理科技重大专项(2015ZX07306001-05)

Promoted sludge anaerobic digestion by the hydrolase produced from food waste fermentation with Aspergillus oryzae

  • Fund Project:
  • 摘要: 将米曲霉接种到餐厨垃圾中生产水解酶,并利用此生物酶强化污泥厌氧消化。对比分析了富含水解酶的餐厨垃圾(实验组)、中温灭活富含水解酶的餐厨垃圾(对照组A)和未发酵餐厨垃圾(对照组B)分别与剩余污泥厌氧共消化情况;考察了实验组对污泥厌氧体系的促进效果;并运用3种模型对反应体系中底物的产甲烷潜力进行了拟合。结果显示,实验组甲烷含量最高可达71.51%;挥发性固体单位累计甲烷产量为(308.46±19.47) mL·g-1,相比对照组A和对照组B显著提高(P<0.05),分别是对照组A和对照组B的1.56倍和1.31倍。修正的 Gompertz模型优于一级动力学模型和Cone模型,能够很好地预测厌氧消化体系的最大甲烷产量,更适宜于拟合富酶餐厨与剩余污泥厌氧共消化体系。
  • 加载中
  • [1] 姜俊杰, 梁美生, 李伟, 等. 脉冲电场在污泥处理中的应用[J]. 环境工程学报, 2016, 10(1): 405-409.
    [2] 刘充. 预处理调解对剩余污泥发酵液微生物电解产氢影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [3] YIN Y, LIU Y J, MENG S J, et al. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion[J]. Applied Energy, 2016, 179: 1131-1137.
    [4] LIU H B, XIAO H, YIN B, et al. Enhanced volatile fatty acid production by a modified biological pretreatment in anaerobic fermentation of waste activated sludge[J]. Chemical Engineering Journal, 2016, 284: 194-201.
    [5] HANDA C L, SANCHES D L F, GETON G M F, et al. Parameters of the fermentation of soybean flour by monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity[J]. Food Chemistry, 2019, 271: 274-283.
    [6] 陈园, 张增强, 沈志红, 等. 羊肚菌固体发酵转化厨余垃圾制取饲料的研究 [J]. 农业环境科学学报, 2011, 30(4): 761-767.
    [7] 赵晨. 多种水果废弃物厌氧消化产甲烷能力的研究[D]. 北京: 北京化工大学, 2017.
    [8] 冯晶, 赵立欣, 姚宗路, 等. 稻壳鸭粪混合物料厌氧消化产沼气模型研究[J]. 环境科学与技术, 2016, 39(s2): 238-242.
    [9] HOH C Y, CORD-RUWISCH R. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant[J]. Biotechnology & Bioengineering, 2015, 51(5): 597-604.
    [10] NEMESTóTHY N, BAKONYI P, RóZSENBERSZKI T, et al. Assessment via the modified gompertz-model reveals new insights concerning the effects of ionic liquids on biohydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(41): 18918-18924.
    [11] LI J H, ZHANG M, YE Z Y, et al. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge[J]. Journal of Environmental Sciences, 2018, 76(2): 267-277.
    [12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [13] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
    [14] ZHANG B, HE P J, LU F, et al. Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes[J]. Water Research, 2007, 41(19): 4468-4478.
    [15] 周莉, 李佩璇, 赵钰灵, 等. 响应面法优化南极磷虾粗脂肪索氏提取工艺[J]. 食品科学, 2017, 38(24): 165-170.
    [16] AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2004, 38(2): 255-266.
    [17] ZHOU Y L, XU Z Y, ZHAO M X, et al. Construction and evaluation of efficient solid-state anaerobic digestion system via vinegar residue[J]. International Biodeterioration & Biodegradation, 2018, 133: 142-150.
    [18] 苑宏英, 李琦, 杨玉萍, 等. pH对蛋白类餐厨垃圾发酵产酸的影响[J]. 环境工程学报, 2018, 12(10): 2929-2934.
    [19] 杨梦, 郑志永, 余雷, 等. 卧式厌氧消化反应器处理高含固污泥的特性研究 [J]. 环境污染与防治, 2018, 40(11): 1224-1228.
    [20] YIN B, LIU H B, WANG Y Y, et al. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractory protein[J]. Bioresource Technology, 2016, 203: 124-131.
    [21] 祖叶品, 刘宏波, 符波, 等. 蛋白酶和EDTA-2Na协同作用对剩余污泥水解的影响[J]. 环境工程学报, 2013, 7(8): 3158-3164.
    [22] SVENSSON K, KJ?RLAUG O, HIGGINS M J, et al. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction[J]. Water Research, 2018, 132: 158-166.
    [23] POGORELKO G, LIONETTI V, FURSOVA O, et al. Arabidopsis and brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens[J]. Plant Physiology, 2013, 162(1): 9-23.
    [24] MA Y Q, GU J, YU L. Evaluation of anaerobic digestion of food waste and waste activated sludge: Soluble COD versus its chemical composition[J]. Science of the Total Environment, 2018, 643: 21-27.
    [25] YU S Y, ZHANG G M, LI J Z, et al. Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge[J]. Bioresource Technology, 2013, 146: 758-761.
    [26] DU H X, LI F S. Characteristics of dissolved organic matter formed in aerobic and anaerobic digestion of excess activated sludge[J]. Chemosphere, 2016, 168: 1022-1031.
    [27] LAY J J, LI Y Y, NOIKE T, et al. Analysis of environmental factors affecting methane production from high-solids organic waste[J]. Water Science and Technology, 1997, 36(6/7): 493-500.
    [28] KAYHANIAN M. Ammonia inhibition in high-solids biogasification: An overview and practical solutions[J]. Environmental Technology, 1999, 20(4): 355-365.
    [29] 罗琨, 杨麒, 李小明, 等. 外加酶强化剩余污泥水解的研究[J]. 环境科学, 2010, 31(3): 763-767.
    [30] 李建昌, 何娟, 袁亚阁, 等. 垃圾厌氧消化中淀粉酶活与产气量关系的研究[J]. 环境科学与技术, 2013, 36(S1): 22-25.
    [31] YANG H, HOU G Y, ZHANG L, et al. Exploring the effect of bisphenol S on sludge hydrolysis and mechanism of the interaction between bisphenol S and alpha-amylase through spectrophotometric methods[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 167: 128-135.
    [32] LUO K, YANG Q, LI X M, et al. Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase[J]. Biochemical Engineering Journal, 2012, 62(1): 17-21.
    [33] UGWUANYI J O, HARVEY L M, MCNEIL B. Development of thermophilic populations, amylase and cellulase enzyme activities during thermophilic aerobic digestion of model agricultural waste slurry[J]. Process Biochemistry, 2004, 39(11): 1661-1669.
    [34] 方慧莹, 王端立, 陈皓, 等. 纳米零价铁对厌氧消化影响的反应动力学模型[J]. 化工学报, 2017, 68(5): 2042-2048.
    [35] EL-MASHAD H M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae[J]. Bioresource Technology, 2013, 132(3): 305-312.
    [36] GUNASEELAN V N. Biochemical methane potential of fruits and vegetable solid waste feedstocks[J]. Biomass & Bioenergy, 2004, 26(4): 389-399.
  • 加载中
计量
  • 文章访问数:  3460
  • HTML全文浏览数:  3401
  • PDF下载数:  117
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03

利用米曲霉发酵餐厨垃圾产水解酶促进污泥厌氧消化

  • 1. 江南大学环境与土木工程学院,无锡 214122
  • 2. 江苏省厌氧生物技术重点实验室,无锡 214122
  • 3. 江苏省水处理技术与材料协同创新中心,苏州 215009
  • 4. 无锡市高新水务有限公司,无锡 214028
基金项目:

国家自然科学基金资助项目51678280

国家水体污染控制与治理科技重大专项2015ZX07306001-05国家自然科学基金资助项目(51678280)

国家水体污染控制与治理科技重大专项(2015ZX07306001-05)

摘要: 将米曲霉接种到餐厨垃圾中生产水解酶,并利用此生物酶强化污泥厌氧消化。对比分析了富含水解酶的餐厨垃圾(实验组)、中温灭活富含水解酶的餐厨垃圾(对照组A)和未发酵餐厨垃圾(对照组B)分别与剩余污泥厌氧共消化情况;考察了实验组对污泥厌氧体系的促进效果;并运用3种模型对反应体系中底物的产甲烷潜力进行了拟合。结果显示,实验组甲烷含量最高可达71.51%;挥发性固体单位累计甲烷产量为(308.46±19.47) mL·g-1,相比对照组A和对照组B显著提高(P<0.05),分别是对照组A和对照组B的1.56倍和1.31倍。修正的 Gompertz模型优于一级动力学模型和Cone模型,能够很好地预测厌氧消化体系的最大甲烷产量,更适宜于拟合富酶餐厨与剩余污泥厌氧共消化体系。

English Abstract

参考文献 (36)

目录

/

返回文章
返回