[1] |
姜俊杰, 梁美生, 李伟, 等. 脉冲电场在污泥处理中的应用[J]. 环境工程学报, 2016, 10(1): 405-409.
|
[2] |
刘充. 预处理调解对剩余污泥发酵液微生物电解产氢影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
[3] |
YIN Y, LIU Y J, MENG S J, et al. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion[J]. Applied Energy, 2016, 179: 1131-1137.
|
[4] |
LIU H B, XIAO H, YIN B, et al. Enhanced volatile fatty acid production by a modified biological pretreatment in anaerobic fermentation of waste activated sludge[J]. Chemical Engineering Journal, 2016, 284: 194-201.
|
[5] |
HANDA C L, SANCHES D L F, GETON G M F, et al. Parameters of the fermentation of soybean flour by monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity[J]. Food Chemistry, 2019, 271: 274-283.
|
[6] |
陈园, 张增强, 沈志红, 等. 羊肚菌固体发酵转化厨余垃圾制取饲料的研究 [J]. 农业环境科学学报, 2011, 30(4): 761-767.
|
[7] |
赵晨. 多种水果废弃物厌氧消化产甲烷能力的研究[D]. 北京: 北京化工大学, 2017.
|
[8] |
冯晶, 赵立欣, 姚宗路, 等. 稻壳鸭粪混合物料厌氧消化产沼气模型研究[J]. 环境科学与技术, 2016, 39(s2): 238-242.
|
[9] |
HOH C Y, CORD-RUWISCH R. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant[J]. Biotechnology & Bioengineering, 2015, 51(5): 597-604.
|
[10] |
NEMESTóTHY N, BAKONYI P, RóZSENBERSZKI T, et al. Assessment via the modified gompertz-model reveals new insights concerning the effects of ionic liquids on biohydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(41): 18918-18924.
|
[11] |
LI J H, ZHANG M, YE Z Y, et al. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge[J]. Journal of Environmental Sciences, 2018, 76(2): 267-277.
|
[12] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[13] |
LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
|
[14] |
ZHANG B, HE P J, LU F, et al. Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes[J]. Water Research, 2007, 41(19): 4468-4478.
|
[15] |
周莉, 李佩璇, 赵钰灵, 等. 响应面法优化南极磷虾粗脂肪索氏提取工艺[J]. 食品科学, 2017, 38(24): 165-170.
|
[16] |
AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2004, 38(2): 255-266.
|
[17] |
ZHOU Y L, XU Z Y, ZHAO M X, et al. Construction and evaluation of efficient solid-state anaerobic digestion system via vinegar residue[J]. International Biodeterioration & Biodegradation, 2018, 133: 142-150.
|
[18] |
苑宏英, 李琦, 杨玉萍, 等. pH对蛋白类餐厨垃圾发酵产酸的影响[J]. 环境工程学报, 2018, 12(10): 2929-2934.
|
[19] |
杨梦, 郑志永, 余雷, 等. 卧式厌氧消化反应器处理高含固污泥的特性研究 [J]. 环境污染与防治, 2018, 40(11): 1224-1228.
|
[20] |
YIN B, LIU H B, WANG Y Y, et al. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractory protein[J]. Bioresource Technology, 2016, 203: 124-131.
|
[21] |
祖叶品, 刘宏波, 符波, 等. 蛋白酶和EDTA-2Na协同作用对剩余污泥水解的影响[J]. 环境工程学报, 2013, 7(8): 3158-3164.
|
[22] |
SVENSSON K, KJ?RLAUG O, HIGGINS M J, et al. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction[J]. Water Research, 2018, 132: 158-166.
|
[23] |
POGORELKO G, LIONETTI V, FURSOVA O, et al. Arabidopsis and brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens[J]. Plant Physiology, 2013, 162(1): 9-23.
|
[24] |
MA Y Q, GU J, YU L. Evaluation of anaerobic digestion of food waste and waste activated sludge: Soluble COD versus its chemical composition[J]. Science of the Total Environment, 2018, 643: 21-27.
|
[25] |
YU S Y, ZHANG G M, LI J Z, et al. Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge[J]. Bioresource Technology, 2013, 146: 758-761.
|
[26] |
DU H X, LI F S. Characteristics of dissolved organic matter formed in aerobic and anaerobic digestion of excess activated sludge[J]. Chemosphere, 2016, 168: 1022-1031.
|
[27] |
LAY J J, LI Y Y, NOIKE T, et al. Analysis of environmental factors affecting methane production from high-solids organic waste[J]. Water Science and Technology, 1997, 36(6/7): 493-500.
|
[28] |
KAYHANIAN M. Ammonia inhibition in high-solids biogasification: An overview and practical solutions[J]. Environmental Technology, 1999, 20(4): 355-365.
|
[29] |
罗琨, 杨麒, 李小明, 等. 外加酶强化剩余污泥水解的研究[J]. 环境科学, 2010, 31(3): 763-767.
|
[30] |
李建昌, 何娟, 袁亚阁, 等. 垃圾厌氧消化中淀粉酶活与产气量关系的研究[J]. 环境科学与技术, 2013, 36(S1): 22-25.
|
[31] |
YANG H, HOU G Y, ZHANG L, et al. Exploring the effect of bisphenol S on sludge hydrolysis and mechanism of the interaction between bisphenol S and alpha-amylase through spectrophotometric methods[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 167: 128-135.
|
[32] |
LUO K, YANG Q, LI X M, et al. Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase[J]. Biochemical Engineering Journal, 2012, 62(1): 17-21.
|
[33] |
UGWUANYI J O, HARVEY L M, MCNEIL B. Development of thermophilic populations, amylase and cellulase enzyme activities during thermophilic aerobic digestion of model agricultural waste slurry[J]. Process Biochemistry, 2004, 39(11): 1661-1669.
|
[34] |
方慧莹, 王端立, 陈皓, 等. 纳米零价铁对厌氧消化影响的反应动力学模型[J]. 化工学报, 2017, 68(5): 2042-2048.
|
[35] |
EL-MASHAD H M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae[J]. Bioresource Technology, 2013, 132(3): 305-312.
|
[36] |
GUNASEELAN V N. Biochemical methane potential of fruits and vegetable solid waste feedstocks[J]. Biomass & Bioenergy, 2004, 26(4): 389-399.
|