[1] HWANG I, KOBAYASHI J, KAWAMOTO K. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF[J]. Waste Management, 2014, 34(2): 402-410.
[2] 罗亭. 城镇有机垃圾热解生物炭理化性质研究[D]. 重庆: 重庆大学, 2014.
[3] 苏毅, 朱惠春, 张金亮, 等. 城市垃圾热化学转化处理技术进展与应用[J]. 工业锅炉, 2015(1): 7-14.
[4] CHENG H F, HU Y N. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824.
[5] CHEN D, YIN L J, WANG H, et al. Pyrolysis technologies for municipal solid waste: A review[J]. Waste Management, 2014, 34(12): 2466-2486.
[6] ATE? F, MISKOLCZI N, BORSODI N. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties[J]. Bioresource Technology, 2013, 133: 443-454.
[7] ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Management, 2012, 32(4): 625-639.
[8] NAKAGAWA K, NAMBA A, MUKAI S R, et al. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes[J]. Water Research, 2004, 38(7): 1791-1798.
[9] JIN H M, CAPAREDA S, CHANG Z Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629.
[10] LONAPPAN L, ROUISSI T, DAS R K, et al. Adsorption of methylene blue on biochar microparticles derived from different waste materials[J]. Waste Management, 2016, 49: 537-544.
[11] LI G L, SHEN B X, LI F K, et al. Elemental mercury removal using biochar pyrolyzed from municipal solid waste[J]. Fuel Processing Technology, 2015, 133: 43-50.
[12] LU X W, JORDAN B, BERGE N D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques[J]. Waste Management, 2012, 32(7): 1353-1365.
[13] FAN S S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 601-611.
[14] 陈倩倩. 宁波市不同区分类垃圾理化特性与温室气体排放特征研究[D]. 杭州: 浙江大学, 2018.
[15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法: GB/T 212-2008[S]. 北京: 中国标准出版社, 2008.
[16] GHAEDI M, NASAB A G, KHODADOUST S, et al. Characterization of zinc oxide nanorods loaded on activated carbon as cheap and efficient adsorbent for removal of methylene blue[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 986-993.
[17] 刘雪成. 城市污泥与谷壳制备吸附剂及其对染料废水处理的研究[D]. 武汉: 武汉科技大学, 2014.
[18] BHATNAGAR A, HOGLAND W, MARQUES M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219: 499-511.
[19] SAKA C. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 21-24.
[20] GUAN B H, YU J, FU H L, et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution[J]. Water Research, 2012, 46(2): 425-432.
[21] LAURENT J, CASELLAS M, PONS M N, et al. Flocs surface functionality assessment of sonicated activated sludge in relation with physico-chemical properties[J]. Ultrasonics Sonochemistry, 2009, 16(4): 488-494.
[22] FAN S S, TANG J, WANG Y, et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism[J]. Journal of Molecular Liquids, 2016, 220: 432-441.
[23] LENG L J, YUAN X Z, HUANG H J, et al. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption[J]. Applied Surface Science, 2015, 346: 223-231.