废旧镍钴锰酸锂电池正极材料闭环回收

郑莹, 凌海, 莫文婷, 周钦文, 高迎龙, 蒋永议, 刘建文. 废旧镍钴锰酸锂电池正极材料闭环回收[J]. 环境工程学报, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129
引用本文: 郑莹, 凌海, 莫文婷, 周钦文, 高迎龙, 蒋永议, 刘建文. 废旧镍钴锰酸锂电池正极材料闭环回收[J]. 环境工程学报, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129
ZHENG Ying, LING Hai, MO Wenting, ZHOU Qinwen, GAO Yinglong, JIANG Yongyi, LIU Jianwen. Closed-loop recovery of anode materials for spent nickel-cobalt manganate lithium battery[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129
Citation: ZHENG Ying, LING Hai, MO Wenting, ZHOU Qinwen, GAO Yinglong, JIANG Yongyi, LIU Jianwen. Closed-loop recovery of anode materials for spent nickel-cobalt manganate lithium battery[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129

废旧镍钴锰酸锂电池正极材料闭环回收

  • 基金项目:

    湖北省自然科学基金一般面上项目2018CFB785湖北省自然科学基金一般面上项目(2018CFB785)

Closed-loop recovery of anode materials for spent nickel-cobalt manganate lithium battery

  • Fund Project:
  • 摘要: 提出了一种闭环回收废旧镍钴锰酸锂电池正极活性物质的方法。采用H2SO4为浸出剂,H2O2为还原剂,浸出回收4种金属离子。结果表明:硫酸浓度为1.5 mol·L-1,反应温度为70 ℃,反应时间为25 min,反应固液比为20∶1 (g∶L),过氧化氢体积分数为1%时,金属镍、钴、锰和锂的浸出率分别为96.8%、96.2%、93.8%和99.1%;动力学分析显示,Ni、Co、Mn、Li浸出反应表观活化能分别为51.75、44.90、46.77和36.08 kJ·mol-1,属于化学反应控制。分离浸出滤液中Ni、Co、Mn离子后,制备Li2CO3终端产品,其XRD图谱显示产品成分较纯,可用于制备锂离子电池正极材料的前驱体。该工艺可实现废旧镍钴锰酸锂正极材料回收较高的经济和环境效益。
  • 加载中
  • [1] ZHANG X, XIE Y, LIN X, et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2013, 15(4): 420-430.
    [2] AL-THYABAT S, NAKAMURA T, SHIBATA E, et al. Adaptation of minerals processing operations for lithium-ion(LIBs) and nickel metal hydride (NiMH) batteries recycling: Critical review[J]. Minerals Engineering, 2013, 45: 4-17.
    [3] SENCANSKI J, BAJUK-BOGDANOVIC D, MAJSTOROVIC D, et al. The synthesis of Li (Co-Mn-Ni)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions[J]. Journal of Power Sources, 2017, 342: 690-703.
    [4] YANG Y, XU S, HE Y. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Management, 2017, 64: 219-227.
    [5] ZENG X, LI J, LIU L. Solving spent lithium-ion battery problems in China: Opportunities and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1759-1767.
    [6] HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528.
    [7] CHEN X, FAN B, XU L, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2016, 112: 3562-3570.
    [8] LI L, QU W, ZHANG X, et al. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282: 544-551.
    [9] SUN L, QIU K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2011, 194: 378-384.
    [10] ZENG G, DENG X, LUO S, et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2012, 199: 164-169.
    [11] XIN Y, GUO X, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258.
    [12] ZHENG X, ZHU Z, LIN X, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4: 361-370.
    [13] CHEN X, GUO C, MA H, et al. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries[J]. Waste Management, 2018, 75: 459-468.
    [14] CHEN X, MA H, LUO C, et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid[J]. Journal of Hazardous Materials, 2017, 326: 77-86.
    [15] LI L, BIAN Y, ZHANG X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371.
    [16] LI L, FAN E, GUAN Y, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233.
    [17] WANG H, HUANG K, ZHANG Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11489-11495.
    [18] CHEN X, CHEN Y, ZHOU T, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38(1): 349-356.
    [19] PAGNANELLI F, MOSCARDINI E, ALTIMARI P, et al. Cobalt products from real waste fractions of end of life lithium ion batteries[J]. Waste Management, 2016, 51: 214-221.
    [20] MESHRAM P, ABHILASH, PANDEY B D, et al. Acid baking of spent lithium ion batteries for selective recovery of major metals: A two-step process[J]. Journal of Industrial & Engineering Chemistry, 2016, 43: 117-126.
    [21] GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254.
    [22] MESHRAM P, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427.
  • 加载中
计量
  • 文章访问数:  4334
  • HTML全文浏览数:  4270
  • PDF下载数:  159
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-03
郑莹, 凌海, 莫文婷, 周钦文, 高迎龙, 蒋永议, 刘建文. 废旧镍钴锰酸锂电池正极材料闭环回收[J]. 环境工程学报, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129
引用本文: 郑莹, 凌海, 莫文婷, 周钦文, 高迎龙, 蒋永议, 刘建文. 废旧镍钴锰酸锂电池正极材料闭环回收[J]. 环境工程学报, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129
ZHENG Ying, LING Hai, MO Wenting, ZHOU Qinwen, GAO Yinglong, JIANG Yongyi, LIU Jianwen. Closed-loop recovery of anode materials for spent nickel-cobalt manganate lithium battery[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129
Citation: ZHENG Ying, LING Hai, MO Wenting, ZHOU Qinwen, GAO Yinglong, JIANG Yongyi, LIU Jianwen. Closed-loop recovery of anode materials for spent nickel-cobalt manganate lithium battery[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1157-1164. doi: 10.12030/j.cjee.201812129

废旧镍钴锰酸锂电池正极材料闭环回收

  • 1. 武昌首义学院城市建设学院,武汉 430064
  • 2. 湖北大学化学化工学院,武汉 430062
基金项目:

湖北省自然科学基金一般面上项目2018CFB785湖北省自然科学基金一般面上项目(2018CFB785)

摘要: 提出了一种闭环回收废旧镍钴锰酸锂电池正极活性物质的方法。采用H2SO4为浸出剂,H2O2为还原剂,浸出回收4种金属离子。结果表明:硫酸浓度为1.5 mol·L-1,反应温度为70 ℃,反应时间为25 min,反应固液比为20∶1 (g∶L),过氧化氢体积分数为1%时,金属镍、钴、锰和锂的浸出率分别为96.8%、96.2%、93.8%和99.1%;动力学分析显示,Ni、Co、Mn、Li浸出反应表观活化能分别为51.75、44.90、46.77和36.08 kJ·mol-1,属于化学反应控制。分离浸出滤液中Ni、Co、Mn离子后,制备Li2CO3终端产品,其XRD图谱显示产品成分较纯,可用于制备锂离子电池正极材料的前驱体。该工艺可实现废旧镍钴锰酸锂正极材料回收较高的经济和环境效益。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回