人工湿地型微生物燃料电池处理啤酒生产废水

吴玥, 董军, 李文德, 王云, 秦传玉. 人工湿地型微生物燃料电池处理啤酒生产废水[J]. 环境工程学报, 2019, 13(6): 1292-1298. doi: 10.12030/j.cjee.201810122
引用本文: 吴玥, 董军, 李文德, 王云, 秦传玉. 人工湿地型微生物燃料电池处理啤酒生产废水[J]. 环境工程学报, 2019, 13(6): 1292-1298. doi: 10.12030/j.cjee.201810122
WU Yue, DONG Jun, LI Wende, WANG Yun, QIN Chuanyu. Treatment of brewery wastewater by constructed wetland microbial fuel cell (CW-MFC)[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1292-1298. doi: 10.12030/j.cjee.201810122
Citation: WU Yue, DONG Jun, LI Wende, WANG Yun, QIN Chuanyu. Treatment of brewery wastewater by constructed wetland microbial fuel cell (CW-MFC)[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1292-1298. doi: 10.12030/j.cjee.201810122

人工湿地型微生物燃料电池处理啤酒生产废水

  • 基金项目:

    国家自然科学基金资助项目41572213国家自然科学基金资助项目(41572213)

Treatment of brewery wastewater by constructed wetland microbial fuel cell (CW-MFC)

  • Fund Project:
  • 摘要: 采用人工湿地型微生物燃料电池处理啤酒生产废水,考察了啤酒生产废水中不同COD浓度条件下(475、1 968、5 640 mg·L-1)人工湿地型微生物燃料电池对COD和氨氮的去除效果,评估了在此过程中微生物燃料电池的产电性能。研究表明,当COD浓度为1 968 mg·L-1时,人工湿地型微生物燃料电池对COD的去除率最高,达到93.5%; 氨氮去除率随COD起始的增加而增加,当进水浓度为5 640 mg·L-1时,氨氮去除率达到70.8%。对产电性能而言,当进水COD浓度为1 968 mg·L-1时,人工湿地型微生物燃料电池产电量最高,其最大电压、功率密度和电流密度分别达到280 mV、24.2 mW·m-2和220 mA·m-2。利用人工湿地型微生物燃料电池处理啤酒生产废水具有一定的可行性,在处理污染物的同时产电,弥补了处理过程中的能源消耗,对废物资源化具有很好的应用前景。
  • 加载中
  • [1] 夏汉平. 人工湿地处理污水的机理与效率[J]. 生态学杂志, 2002, 21(4): 51-59.
    [2] PALFY T G, MOLLE P, LANGERGRABER G, et al. Simulation of constructed wetlands treating combined sewer ower flow using hydrus/CW 2D[J]. Ecologocal Engineering, 2016, 87: 340-347.
    [3] SIMS A, ZHANG Y Y, GALARAJ S, et al. Toward the development of microbial indicators for wetland assessment[J]. Water Research, 2013, 47(5): 1711-1725.
    [4] COOPER P F, BOON A G. The Use of Phragmites for Wastewater Treatment by the Root Zone Method Aquatic Plants for Water Treatmentand Resource Recovery[M]. Orlando, Florida USA: Magnolia Publishing Company, 1987.
    [5] 谢静怡, 李永峰, 郑阳. 环境生物电化学原理与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
    [6] LOGAN B E, HAMELERS B, ROZENDAL R A, et al. Microbial fuel cells:Methodology and technology[J]. Environmental Technology, 2006, 40(17): 5181-5192.
    [7] SCHAMPHELAIRE L DE, RABAEY K, BOECKX P, et al. Outlook for benefits of sedimentmicrobial fuel cells with two bio-electrodes[J]. Microbial Biotechnology, 2008, 1(6): 446-462.
    [8] LI Y, WU Y, LIU B, et al. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system[J]. Bioresource Technology, 2015, 192: 238-246.
    [9] LI Y, WU Y, PURANIK S, et al. Metals as electron acceptors in single-chamber microbial fuel cells[J]. Journal of Power Sources, 2014, 269: 430-439.
    [10] YADAV A K, DASH P, MOHANTY A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J]. Ecological Engineering, 2012, 47(5): 126-131.
    [11] CHEN Z, HUANG Y, LIANG J, et al. A novel sediment microbial fuelcell with a biocathode in the rice rhizosphere[J]. Bioresource Technology, 2012, 108: 55-59.
    [12] FANG Z, SONG H L, CANG N, et al. Performance of microbial fuel cellcoupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J]. Bioresource Technology, 2013, 144: 165-171.
    [13] 袁惠民, 杜绿君. 啤酒技术及管理[M]. 北京: 中国轻工业出版社, 1994.
    [14] 曹敬华, 黄铭国. 生物接触氧化法处理啤酒生产废水的设计与运行[J]. 中国给水排水, 2008, 18(8): 84-85.
    [15] LIU S, SONG H, WEI S, et al. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland: Microbial fuel cell systems[J]. Bioresource Technology, 2014, 166: 575-583.
    [16] 章轶磊.微生物燃料电池强化处理高浓度有机废水[D]. 合肥: 合肥工业大学, 2012.
    [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [18] GE Z, LI J, XIAO L, et al. Recovery of electrical energy in microbial fuel cells: Brief review[J]. Environmental Technology, 2014, 1: 137 -141.
    [19] 王同悦. 人工湿地型微生物燃料电池处理污水及生物产电性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [20] LIU H, RAMANATHAN R, BRUCEE L,et al. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental & Science Technonogy, 2004, 38: 2281-2285.
    [21] 周少奇. 氨氮厌氧氧化的微生物反应机理[J]. 华南理工大学学报(自然科学版), 2000, 28(11): 16-19.
    [22] HULTBERG M, BODIN H. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction[J]. Environmental Biotechnology, 2017, 101: 4791-4798.
    [23] LI Y, WILLIAMS I, XU Z, et al. Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)[J]. Applied Energy, 2016, 163: 352-360.
    [24] 李晓婷. UASB-CASS 组合工艺处理啤酒生产废水工程实例[J]. 工业水处理, 2016, 36(3): 93-104.
    [25] HU Y S, ZHAO Y Q, RYMSZEWICZ A, et al. Robust biological nitrogen removal by creating multiple tides in a single bedtidal flow constructed wetland[J]. Science of the Total Environment, 2014, 470-471: 1197-1204.
  • 加载中
计量
  • 文章访问数:  3716
  • HTML全文浏览数:  3630
  • PDF下载数:  115
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

人工湿地型微生物燃料电池处理啤酒生产废水

  • 1. 吉林大学新能源与环境学院,长春130021
基金项目:

国家自然科学基金资助项目41572213国家自然科学基金资助项目(41572213)

摘要: 采用人工湿地型微生物燃料电池处理啤酒生产废水,考察了啤酒生产废水中不同COD浓度条件下(475、1 968、5 640 mg·L-1)人工湿地型微生物燃料电池对COD和氨氮的去除效果,评估了在此过程中微生物燃料电池的产电性能。研究表明,当COD浓度为1 968 mg·L-1时,人工湿地型微生物燃料电池对COD的去除率最高,达到93.5%; 氨氮去除率随COD起始的增加而增加,当进水浓度为5 640 mg·L-1时,氨氮去除率达到70.8%。对产电性能而言,当进水COD浓度为1 968 mg·L-1时,人工湿地型微生物燃料电池产电量最高,其最大电压、功率密度和电流密度分别达到280 mV、24.2 mW·m-2和220 mA·m-2。利用人工湿地型微生物燃料电池处理啤酒生产废水具有一定的可行性,在处理污染物的同时产电,弥补了处理过程中的能源消耗,对废物资源化具有很好的应用前景。

English Abstract

参考文献 (25)

目录

/

返回文章
返回