钢渣污泥陶粒催化剂催化臭氧深度处理炼油废水
Advanced treatment of refinery wastewater by catalytic ozonation with steel slag sludge ceramsite catalyst
-
摘要: 采用固相混合法制备了钢渣污泥陶粒催化剂,SEM、XRD测试结果显示,催化剂具有较为发达的孔隙结构,活性组分以MnO2和CuO晶型形态分布于陶粒中。对含盐炼油废水生化尾水进行了臭氧催化氧化研究,考察了废水初始pH、催化剂用量、臭氧投加量等因素对COD去除效果的影响。结果表明,当反应初始pH为7.36、催化剂用量为15 g·L-1、臭氧投加量为4.21 mg·min-1时,反应35 min,废水中COD从86.97 mg·L-1降至48.02 mg·L-1,出水水质达到新修订的《石油炼制工业污染物排放标准》。所制备的催化剂活性稳定、使用寿命长,活性组分锰、铜溶出率低,无二次污染产生。Abstract: A kind of steel slag sludge ceramsite catalyst was prepared by solid phase mixing method, and the relatively developed pore structure was observed in its SEM images. The XRD pattern indicted that the active components were distributed in this ceramsite with MnO2 and CuO crystals. The steel slag sludge ceramsite catalyst was used to treat the biochemical tail water of the saline refinery wastewater, and the effects of initial pH of tail water, catalyst dosage and ozone dosage on chemical oxygen demand (COD) removal were studied. The results indicated that at the initial pH of 7.36, catalyst dosage of 15 g·L-1, ozone dosage of 4.21 mg·min-1, the COD of tail water could be reduced from 86.97 mg·L-1 to 48.02 mg·L-1 after 35min catalytic ozonation, and the effluent could meet the newly revised Emission Standards of Petroleum Refining Industrial Pollutants. The prepared ceramsite catalyst has the advantages of stable activity, long service life and low dissolution rate of manganese and copper, as well as no secondary pollution.
-
[1] 邓凤霞, 邱珊, 岳秀丽, 等. 非均相催化臭氧氧化深度处理炼油废水[J]. 浙江大学学报(工学版) , 2015, 49(3): 555-563. [2] 王晓. 炼油废水处理与回用技术应用研究[J]. 给水排水, 2015, 12(2): 59-61. [3] 钟敏, 宋黎明, 王子, 等. 石油工业废水处理技术及应用概述[J]. 科学技术与工程, 2013, 13(34): 10244-10249. [4] 陆洪宇, 马文成, 张梁, 等. 臭氧催化氧化工艺深度处理印染废水[J]. 环境工程学报, 2013, 7(8): 2873-2876. [5] 孟冠华, 刘宝河, 万彤, 等. Cu/C-Al2O3催化臭氧氧化印染废水[J]. 工业水处理, 2014, 34(10): 41-44. [6] DACHIPALLY P, JONNALAGADDA S B. Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems[J]. Environmental Letters, 2011, 46(8): 887-897. [7] 杨戊戌. 铈系催化剂的制备及其催化臭氧化性能研究[D]. 北京: 中国矿业大学, 2016. [8] 蒋广安, 赵越, 李宝忠, 等. 活性炭基催化剂臭氧催化氧化处理酸性大红染料废水[J]. 现代化工, 2018(5): 124-127. [9] 孙志忠. 臭氧/多相催化氧化去除水中有机污染物效能与机理[D]. 哈尔滨: 哈尔滨工业大学, 2006. [10] 庄海峰, 黄海丽, 徐科龙, 等. 废弃物水稻秸秆制备催化剂强化臭氧深度处理造纸废水的效能[J]. 化工学报, 2017, 68(1): 313-319. [11] GAO G Y, KANG J, SHEN J, et al. Investigation on the kinetics of heterogeneous catalytic ozone decomposition in aqueous solution over composite iron-manganese silicate oxide[J]. Ozone-Science & Engineering, 2016, 38(6): 434-442. [12] 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014. [13] 汪星志. 臭氧非均相催化氧化工艺深度处理印染废水研究[D]. 广州: 华南理工大学, 2016. [14] 宁军, 陈立伟, 蔡天明. 臭氧催化氧化降解苯胺的机理[J]. 环境工程学报, 2013, 7(2): 551-556. [15] 邓凤霞. 非均相臭氧催化氧化深度处理炼油废水研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [16] MOUSSAVI G, KHAVANIN A, ALIZADEH R. The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 175-181. [17] 温舒涵, 姚沁坪, 李炜琦, 等. MnO2陶粒臭氧氧化催化剂的制备及其性能[J]. 化工环保, 2018, 38(2): 157-163.
计量
- 文章访问数: 3955
- HTML全文浏览数: 3866
- PDF下载数: 114
- 施引文献: 0