Ag/AgCl改性碳纳米管薄膜连续流光催化去除水中亚甲基蓝

许凯, 杨胜楠, 沈忱思, 李方, 马春燕, 蒋晨晖. Ag/AgCl改性碳纳米管薄膜连续流光催化去除水中亚甲基蓝[J]. 环境工程学报, 2019, 13(6): 1305-1313. doi: 10.12030/j.cjee.201811136
引用本文: 许凯, 杨胜楠, 沈忱思, 李方, 马春燕, 蒋晨晖. Ag/AgCl改性碳纳米管薄膜连续流光催化去除水中亚甲基蓝[J]. 环境工程学报, 2019, 13(6): 1305-1313. doi: 10.12030/j.cjee.201811136
XU Kai, YANG Shengnan, SHEN Chensi, LI Fang, MA Chunyan, JIANG Chenhui. Continuous-flow photocatalysis with Ag/AgCl modified carbon nanotubes filter towards methylene blue removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1305-1313. doi: 10.12030/j.cjee.201811136
Citation: XU Kai, YANG Shengnan, SHEN Chensi, LI Fang, MA Chunyan, JIANG Chenhui. Continuous-flow photocatalysis with Ag/AgCl modified carbon nanotubes filter towards methylene blue removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1305-1313. doi: 10.12030/j.cjee.201811136

Ag/AgCl改性碳纳米管薄膜连续流光催化去除水中亚甲基蓝

  • 基金项目:

    省部共建分离膜与膜过程国家重点实验室(天津工业大学)开放课题M2-201709

    上海市自然科学基金资助项目18ZR1401000

    上海市浦江人才计划18PJ1400400

    国家重点研发计划2018YFF0215703省部共建分离膜与膜过程国家重点实验室(天津工业大学)开放课题(M2-201709)

    上海市自然科学基金资助项目(18ZR1401000)

    上海市浦江人才计划(18PJ1400400)

    国家重点研发计划(2018YFF0215703)

Continuous-flow photocatalysis with Ag/AgCl modified carbon nanotubes filter towards methylene blue removal from water

  • Fund Project:
  • 摘要: 为了探究Ag/AgCl光催化薄膜在连续流状态下对有机污染物的光催化性能,采用连续沉积方法制备了Ag/AgCl改性碳纳米管(CNTs)薄膜,以亚甲基蓝为目标污染物,利用光化学过滤器对亚甲基蓝的光催化脱色效果进行了探究。结果表明,在900 μW·cm-2光强下,Ag/AgCl-CNTs复合薄膜在连续流光催化体系中对10 mg·L-1的亚甲基蓝去除率可达90%,比传统序批式反应体系高出70%以上,说明连续流体系的对流传质效果明显优于序批式体系的扩散传质效果。同时,Ag/AgCl的沉积显著改善了CNTs薄膜的光催化脱色性能。在最佳实验条件下,Ag/AgCl改性后,复合薄膜的光催化脱色效果比CNTs薄膜提高了40%。Ag/AgCl-CNTs多功能复合薄膜体系具有光催化降解和膜分离以及减缓膜污染等多重特性。
  • 加载中
  • [1] LIU Y, XIE J, VECITIS C D, et al. Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2[J]. Environmental Science Water Research & Technology, 2015, 1(6): 769-778.
    [2] VOTSI N E P, KALLIMANIS A S, PANTIS D. An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas[J]. Environmental Pollution, 2017, 221(2): 459-469.
    [3] WU G, CAO W, LIU L, et al. Water pollution management in China: Recent incidents and proposed improvements[J]. Water Science & Technology, 2017, 18(2): 603-611.
    [4] 刘梅红. 印染废水处理技术研究进展[J]. 纺织学报, 2007, 28(1): 116-121.
    [5] 洪俊明, 洪华生, 熊小京. 生物法处理印染废水研究进展[J]. 现代化工, 2005, 25(7): 98-110.
    [6] LIU S, TANG Z R, SUN Y, et al. One-dimension-bassed spatially ordered architectures for solar energy conversion[J]. Chemical Society Reviews, 2015, 44(15): 5053-5075.
    [7] GAYA U L, ABDULLAH A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9(1): 1-12.
    [8] 王欢,崔文权, 韩炳旭,等. Ag/AgX(X=Cl,Br,I)等离子共振光催化剂的研究进展[J]. 化工进展, 2013, 32(2): 346-351.
    [9] ZHANG H, FAN X, QUAN X, et al. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light[J]. Environmental Science & Technology, 2011, 45(13): 5731-5736.
    [10] SHI H, CHEN J, LI G, et al. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6959-6967.
    [11] JIANG Y, WANG W N, FORTNER J D, et al. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes[J]. Environmental Science & Technology, 2015, 49(11): 6846-6854.
    [12] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    [13] GAO G, VECITIS C D. Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: Electrodes passivation and regeneration and prevention[J]. Electrochimica Acta, 2013, 98(10): 131-138.
    [14] LEE S M, LEE S C, KIM H J, et al. Pore characterization of multi-walled carbon nanotubes modified by KOH[J]. Chemical Physics Letters, 2005, 416(4): 251-255.
    [15] LIU Y, LIU H, ZHOU Z, et al. Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter[J]. Environmental Science & Technology, 2015, 49(13): 7974-7980.
    [16] WANG P, PROF B H, QIN X, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light[J]. Journal of the German Chemical Society, 2008, 47(41): 7931-7933.
    [17] TANG Y, SUBRAMANIAM V P, LAU T H, et al. In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 577-585.
    [18] GAO G, PAN M, VECITIS C D. Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance[J]. Journal of Materials Chemistry A, 2015, 3(14): 7575-7582.
    [19] LIU H, VECITIS C D. Reactive transport mechanism for organic oxidation during electrochemical filtration: Mass-transfer, physical adsorption, and electron-transfer[J]. Journal of Physical Chemistry C, 2012, 116(1): 374-383.
    [20] CHEN C Y, JAFVERT C T. Photoreactivity of carboxylated single-walled carbon nanatubes in sunlight: Reactive oxygen species production in water[J]. Environmental Science & Technology, 2010, 44(17): 6674-6679.
    [21] ZHU Q, WANG W S, LIN L, et al. Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability[J]. Journal of Physical Chemistry C, 2013, 117(11): 5894-5900.
    [22] CAI B, WANG J, GAN S, et al. A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive activities[J]. Journal of Materials Chemistry A, 2014, 2(15): 5280-5286.
    [23] CHEN M L, ZHANG F J, OH W C. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources[J]. New Carbon Materials, 2009, 24(2): 159-166.
  • 加载中
计量
  • 文章访问数:  3904
  • HTML全文浏览数:  3790
  • PDF下载数:  122
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

Ag/AgCl改性碳纳米管薄膜连续流光催化去除水中亚甲基蓝

  • 1. 东华大学环境科学与工程学院,国家环境保护纺织工业污染防治工程技术中心,上海 201620
  • 2. 上海污染控制与生态安全研究院,上海 200092
  • 3. 中交上海航道勘察设计研究院有限公司,上海 200120
基金项目:

省部共建分离膜与膜过程国家重点实验室(天津工业大学)开放课题M2-201709

上海市自然科学基金资助项目18ZR1401000

上海市浦江人才计划18PJ1400400

国家重点研发计划2018YFF0215703省部共建分离膜与膜过程国家重点实验室(天津工业大学)开放课题(M2-201709)

上海市自然科学基金资助项目(18ZR1401000)

上海市浦江人才计划(18PJ1400400)

国家重点研发计划(2018YFF0215703)

摘要: 为了探究Ag/AgCl光催化薄膜在连续流状态下对有机污染物的光催化性能,采用连续沉积方法制备了Ag/AgCl改性碳纳米管(CNTs)薄膜,以亚甲基蓝为目标污染物,利用光化学过滤器对亚甲基蓝的光催化脱色效果进行了探究。结果表明,在900 μW·cm-2光强下,Ag/AgCl-CNTs复合薄膜在连续流光催化体系中对10 mg·L-1的亚甲基蓝去除率可达90%,比传统序批式反应体系高出70%以上,说明连续流体系的对流传质效果明显优于序批式体系的扩散传质效果。同时,Ag/AgCl的沉积显著改善了CNTs薄膜的光催化脱色性能。在最佳实验条件下,Ag/AgCl改性后,复合薄膜的光催化脱色效果比CNTs薄膜提高了40%。Ag/AgCl-CNTs多功能复合薄膜体系具有光催化降解和膜分离以及减缓膜污染等多重特性。

English Abstract

参考文献 (23)

目录

/

返回文章
返回