[1] |
LIU Y, XIE J, VECITIS C D, et al. Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2[J]. Environmental Science Water Research & Technology, 2015, 1(6): 769-778.
|
[2] |
VOTSI N E P, KALLIMANIS A S, PANTIS D. An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas[J]. Environmental Pollution, 2017, 221(2): 459-469.
|
[3] |
WU G, CAO W, LIU L, et al. Water pollution management in China: Recent incidents and proposed improvements[J]. Water Science & Technology, 2017, 18(2): 603-611.
|
[4] |
刘梅红. 印染废水处理技术研究进展[J]. 纺织学报, 2007, 28(1): 116-121.
|
[5] |
洪俊明, 洪华生, 熊小京. 生物法处理印染废水研究进展[J]. 现代化工, 2005, 25(7): 98-110.
|
[6] |
LIU S, TANG Z R, SUN Y, et al. One-dimension-bassed spatially ordered architectures for solar energy conversion[J]. Chemical Society Reviews, 2015, 44(15): 5053-5075.
|
[7] |
GAYA U L, ABDULLAH A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9(1): 1-12.
|
[8] |
王欢,崔文权, 韩炳旭,等. Ag/AgX(X=Cl,Br,I)等离子共振光催化剂的研究进展[J]. 化工进展, 2013, 32(2): 346-351.
|
[9] |
ZHANG H, FAN X, QUAN X, et al. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light[J]. Environmental Science & Technology, 2011, 45(13): 5731-5736.
|
[10] |
SHI H, CHEN J, LI G, et al. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6959-6967.
|
[11] |
JIANG Y, WANG W N, FORTNER J D, et al. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes[J]. Environmental Science & Technology, 2015, 49(11): 6846-6854.
|
[12] |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
|
[13] |
GAO G, VECITIS C D. Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: Electrodes passivation and regeneration and prevention[J]. Electrochimica Acta, 2013, 98(10): 131-138.
|
[14] |
LEE S M, LEE S C, KIM H J, et al. Pore characterization of multi-walled carbon nanotubes modified by KOH[J]. Chemical Physics Letters, 2005, 416(4): 251-255.
|
[15] |
LIU Y, LIU H, ZHOU Z, et al. Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter[J]. Environmental Science & Technology, 2015, 49(13): 7974-7980.
|
[16] |
WANG P, PROF B H, QIN X, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light[J]. Journal of the German Chemical Society, 2008, 47(41): 7931-7933.
|
[17] |
TANG Y, SUBRAMANIAM V P, LAU T H, et al. In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 577-585.
|
[18] |
GAO G, PAN M, VECITIS C D. Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance[J]. Journal of Materials Chemistry A, 2015, 3(14): 7575-7582.
|
[19] |
LIU H, VECITIS C D. Reactive transport mechanism for organic oxidation during electrochemical filtration: Mass-transfer, physical adsorption, and electron-transfer[J]. Journal of Physical Chemistry C, 2012, 116(1): 374-383.
|
[20] |
CHEN C Y, JAFVERT C T. Photoreactivity of carboxylated single-walled carbon nanatubes in sunlight: Reactive oxygen species production in water[J]. Environmental Science & Technology, 2010, 44(17): 6674-6679.
|
[21] |
ZHU Q, WANG W S, LIN L, et al. Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability[J]. Journal of Physical Chemistry C, 2013, 117(11): 5894-5900.
|
[22] |
CAI B, WANG J, GAN S, et al. A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive activities[J]. Journal of Materials Chemistry A, 2014, 2(15): 5280-5286.
|
[23] |
CHEN M L, ZHANG F J, OH W C. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources[J]. New Carbon Materials, 2009, 24(2): 159-166.
|