有机磷酸化TiO2改性阳离子交换膜的制备与性能

周璇, 郑可, 周晓. 有机磷酸化TiO2改性阳离子交换膜的制备与性能[J]. 环境工程学报, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116
引用本文: 周璇, 郑可, 周晓. 有机磷酸化TiO2改性阳离子交换膜的制备与性能[J]. 环境工程学报, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116
ZHOU Xuan, ZHENG Ke, ZHOU Xiao. Preparation and characterization of organophosphorylated TiO2 modified cation exchange membranes[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116
Citation: ZHOU Xuan, ZHENG Ke, ZHOU Xiao. Preparation and characterization of organophosphorylated TiO2 modified cation exchange membranes[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116

有机磷酸化TiO2改性阳离子交换膜的制备与性能

  • 基金项目:

    国家重点研发计划项目2016YFC0400705国家重点研发计划项目(2016YFC0400705)

Preparation and characterization of organophosphorylated TiO2 modified cation exchange membranes

  • Fund Project:
  • 摘要: 通过添加有机磷酸化纳米二氧化钛(organophosphorylated titania nanoparticles,OPTi)的方法提高聚氯乙烯(PVC)阳离子交换膜的性能,先采用氨基三亚甲基膦酸通过磷氧化学键合将纳米二氧化钛有机磷酸化,再将制备好的OPTi与PVC粉末共混制备阳离子交换膜。通过X射线光电子能谱和傅里叶变换红外光谱分析OPTi的元素组成和表面特征官能团,通过扫描电镜研究了异相膜的表面和断面形貌。此外,还考察了不同OPTi的添加量对膜的含水率、离子交换量、机械性能和膜面电阻等性质的影响。结果表明,OPTi的加入使膜的固定电荷浓度、离子选择性和机械性能提高,膜面电阻大大降低并且在电渗析实验中,改性异相膜与原膜比较达到能耗降低26.68%、电流效率提高29.27%的显著效果。
  • 加载中
  • [1] ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
    [2] ZHENG X, CHEN D, WANG Q, et al. Seawater desalination in China: Retrospect and prospect[J]. Chemical Engineering Journal, 2014, 242(15): 404-413.
    [3] LOPEZ A M, WILLIAMS M, PAIVA M, et al. Potential of electrodialytic techniques in brackish desalination and recovery of industrial process water for reuse[J]. Desalination, 2017, 409: 108-114.
    [4] CAMPIONE A, GURRERI L, CIOFALO M, et al. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434(SI): 121-160.
    [5] STRATHMANN H, KEDEM O, WILF M. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288.
    [6] XU T. Ion exchange membranes: State of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1/2): 1-29.
    [7] RAN J, WU L, HE Y, et al. Ion exchange membranes: New developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291.
    [8] LUO T, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review[J]. Journal of Membrane Science, 2018, 555: 429-454.
    [9] RAN J, WU L, HE Y, et al. Ion exchange membranes: New developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291.
    [10] HOSSEINI S M, ANDANI S M J M, JAFARI M R. Tailoring the ionic transfer characteristics of polyvinyl chloride-based heterogeneous ion exchange membranes by embedding carboxy methyl cellulose in membrane channels[J]. Journal of Polymer Research, 2016, 23(8): 160.
    [11] HOSSEINI S M, JASHNI E, HABIBI M, et al. Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization[J]. Journal of Membrane Science, 2017, 541:641-652.
    [12] VOGEL C, MEIER-HAACK J. Preparation of ion-exchange materials and membranes[J]. Desalination, 2014, 342(5): 156-174.
    [13] NAYAK V, JYOTHI M S, BALAKRISHNA R G, et al. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample[J]. Journal of Hazardous Materials, 2017, 331: 289-299.
    [14] YIN J, DENG B. Polymer-matrix nanocomposite membranes for water treatment[J]. Journal of Membrane Science, 2015, 479: 256-275.
    [15] SHUKLA G, PANDEY R P, SHAHI V K. Temperature resistant phosphorylated graphene oxide-sulphonated polyimide composite cation exchange membrane for water desalination with improved performance[J]. Journal of Membrane Science, 2016, 520: 972-982.
    [16] HOSSEINI S M, JEDDI F, NEMATI M, et al. Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles: Preparation, characterization and ionic transport property in desalination[J]. Desalination, 2014, 341(1): 107-114.
    [17] BET-MOUSHOUL E, MANSOURPANAH Y, FARHADI K, et al. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal, 2016, 283: 29-46.
    [18] AYYARU S, DHARMALINGAM S. A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application[J]. Energy, 2015, 88: 202-208.
    [19] HOSSEINI S M, NEMATI M, JEDDI F, et al. Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: Mono/bivalent ionic transport property in desalination[J]. Desalination, 2015, 359: 167-175.
    [20] BHADjA V, CHATTERjEE U, JEWRAjKA S K, et al. Poly(acrylonitrile-co-styrene sodium sulfonate-co-n-butyl acrylate) terpolymer based cation exchange membrane for water desalination via electrodialysis[J]. RSC Advances, 2015, 5(50): 40026-40035.
    [21] ZHOU M, CHEN X, PAN J, et al. A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis[J]. Desalination, 2017, 415: 29-39.
    [22] DENG C, JAMES P F, WRIGHT P V. Poly(tetraethylene glycol malonate) titanium oxide hybrid materials by sol-gel methods[J]. Journal of Materials Chemistry, 1998, 8(1): 153-159.
    [23] 张志军, 胡涓, 陈整生, 等. 纳米二氧化钛复合石墨烯催化剂的制备及处理染料废水[J]. 环境工程学报, 2014, 8(7): 2875-2879.
    [24] COSTA A C F M, VILAR M A, LIRA H L, et al. Synthesis and characterization of TiO2 nanoparticles[J]. Ceramica, 2006, 52(324): 255-259.
    [25] MAT Y, ZHANG X J, SHAO G S, et al. Ordered microporous titanium phosphonate materials: Synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. Journal of Physical Chemistry C, 2014, 112(8): 3090-3096.
    [26] WANG S, ZHOU S. Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2, under UV and visible-light irradiation[J]. Journal of Hazardous Materials, 2011, 185(1): 77-85.
    [27] HONG W, HOU W, WANG J, et al. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix[J]. Journal of Power Sources, 2010, 195(13): 4104-4113.
    [28] KOROSI L, PAPP S, BERTOTI I, et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2[J]. Chemistry of Materials, 2007, 19(19): 4811-4819.
    [29] GOPAL N O, LO H H, KE T F, et al. Visible light active phosphorus-doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation[J]. Journal of Physical Chemistry C, 2012, 116(30): 16191-16197.
    [30] NIU J, LU P, KANG M, et al. P-doped TiO2, with superior visible-light activity prepared by rapid microwave hydrothermal method[J]. Applied Surface Science, 2014, 319(1): 99-106.
    [31] YU J C, ZHANG L Z, ZHENG Z, et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry of Materials, 2003, 15(11): 2280-2286.
    [32] XIA Y, JIANG Y, LI F, et al. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2[J]. Applied Surface Science, 2014, 289(12): 306-315.
    [33] PLECIS A, SCHOCH R B, RENAUD P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip[J]. Nano Letters, 2005, 5(6): 1147-1155.
    [34] MOON S H, YUN S H. Process integration of electrodialysis for a cleaner environment[J]. Current Opinion in Chemical Engineering, 2014, 4: 25-31.
    [35] LUO J, WU C, XU T, et al. Diffusion dialysis-concept, principle and applications[J]. Journal of Membrane Science, 2011, 366(1): 1-16.
  • 加载中
计量
  • 文章访问数:  4060
  • HTML全文浏览数:  3968
  • PDF下载数:  118
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18
周璇, 郑可, 周晓. 有机磷酸化TiO2改性阳离子交换膜的制备与性能[J]. 环境工程学报, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116
引用本文: 周璇, 郑可, 周晓. 有机磷酸化TiO2改性阳离子交换膜的制备与性能[J]. 环境工程学报, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116
ZHOU Xuan, ZHENG Ke, ZHOU Xiao. Preparation and characterization of organophosphorylated TiO2 modified cation exchange membranes[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116
Citation: ZHOU Xuan, ZHENG Ke, ZHOU Xiao. Preparation and characterization of organophosphorylated TiO2 modified cation exchange membranes[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1282-1291. doi: 10.12030/j.cjee.201810116

有机磷酸化TiO2改性阳离子交换膜的制备与性能

  • 1. 华南理工大学环境与能源学院,广州 510006
  • 2. 贵州科学院,贵阳 550001
基金项目:

国家重点研发计划项目2016YFC0400705国家重点研发计划项目(2016YFC0400705)

摘要: 通过添加有机磷酸化纳米二氧化钛(organophosphorylated titania nanoparticles,OPTi)的方法提高聚氯乙烯(PVC)阳离子交换膜的性能,先采用氨基三亚甲基膦酸通过磷氧化学键合将纳米二氧化钛有机磷酸化,再将制备好的OPTi与PVC粉末共混制备阳离子交换膜。通过X射线光电子能谱和傅里叶变换红外光谱分析OPTi的元素组成和表面特征官能团,通过扫描电镜研究了异相膜的表面和断面形貌。此外,还考察了不同OPTi的添加量对膜的含水率、离子交换量、机械性能和膜面电阻等性质的影响。结果表明,OPTi的加入使膜的固定电荷浓度、离子选择性和机械性能提高,膜面电阻大大降低并且在电渗析实验中,改性异相膜与原膜比较达到能耗降低26.68%、电流效率提高29.27%的显著效果。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回