[1] |
ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
|
[2] |
ZHENG X, CHEN D, WANG Q, et al. Seawater desalination in China: Retrospect and prospect[J]. Chemical Engineering Journal, 2014, 242(15): 404-413.
|
[3] |
LOPEZ A M, WILLIAMS M, PAIVA M, et al. Potential of electrodialytic techniques in brackish desalination and recovery of industrial process water for reuse[J]. Desalination, 2017, 409: 108-114.
|
[4] |
CAMPIONE A, GURRERI L, CIOFALO M, et al. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434(SI): 121-160.
|
[5] |
STRATHMANN H, KEDEM O, WILF M. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288.
|
[6] |
XU T. Ion exchange membranes: State of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1/2): 1-29.
|
[7] |
RAN J, WU L, HE Y, et al. Ion exchange membranes: New developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291.
|
[8] |
LUO T, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review[J]. Journal of Membrane Science, 2018, 555: 429-454.
|
[9] |
RAN J, WU L, HE Y, et al. Ion exchange membranes: New developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291.
|
[10] |
HOSSEINI S M, ANDANI S M J M, JAFARI M R. Tailoring the ionic transfer characteristics of polyvinyl chloride-based heterogeneous ion exchange membranes by embedding carboxy methyl cellulose in membrane channels[J]. Journal of Polymer Research, 2016, 23(8): 160.
|
[11] |
HOSSEINI S M, JASHNI E, HABIBI M, et al. Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization[J]. Journal of Membrane Science, 2017, 541:641-652.
|
[12] |
VOGEL C, MEIER-HAACK J. Preparation of ion-exchange materials and membranes[J]. Desalination, 2014, 342(5): 156-174.
|
[13] |
NAYAK V, JYOTHI M S, BALAKRISHNA R G, et al. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample[J]. Journal of Hazardous Materials, 2017, 331: 289-299.
|
[14] |
YIN J, DENG B. Polymer-matrix nanocomposite membranes for water treatment[J]. Journal of Membrane Science, 2015, 479: 256-275.
|
[15] |
SHUKLA G, PANDEY R P, SHAHI V K. Temperature resistant phosphorylated graphene oxide-sulphonated polyimide composite cation exchange membrane for water desalination with improved performance[J]. Journal of Membrane Science, 2016, 520: 972-982.
|
[16] |
HOSSEINI S M, JEDDI F, NEMATI M, et al. Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles: Preparation, characterization and ionic transport property in desalination[J]. Desalination, 2014, 341(1): 107-114.
|
[17] |
BET-MOUSHOUL E, MANSOURPANAH Y, FARHADI K, et al. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal, 2016, 283: 29-46.
|
[18] |
AYYARU S, DHARMALINGAM S. A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application[J]. Energy, 2015, 88: 202-208.
|
[19] |
HOSSEINI S M, NEMATI M, JEDDI F, et al. Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: Mono/bivalent ionic transport property in desalination[J]. Desalination, 2015, 359: 167-175.
|
[20] |
BHADjA V, CHATTERjEE U, JEWRAjKA S K, et al. Poly(acrylonitrile-co-styrene sodium sulfonate-co-n-butyl acrylate) terpolymer based cation exchange membrane for water desalination via electrodialysis[J]. RSC Advances, 2015, 5(50): 40026-40035.
|
[21] |
ZHOU M, CHEN X, PAN J, et al. A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis[J]. Desalination, 2017, 415: 29-39.
|
[22] |
DENG C, JAMES P F, WRIGHT P V. Poly(tetraethylene glycol malonate) titanium oxide hybrid materials by sol-gel methods[J]. Journal of Materials Chemistry, 1998, 8(1): 153-159.
|
[23] |
张志军, 胡涓, 陈整生, 等. 纳米二氧化钛复合石墨烯催化剂的制备及处理染料废水[J]. 环境工程学报, 2014, 8(7): 2875-2879.
|
[24] |
COSTA A C F M, VILAR M A, LIRA H L, et al. Synthesis and characterization of TiO2 nanoparticles[J]. Ceramica, 2006, 52(324): 255-259.
|
[25] |
MAT Y, ZHANG X J, SHAO G S, et al. Ordered microporous titanium phosphonate materials: Synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. Journal of Physical Chemistry C, 2014, 112(8): 3090-3096.
|
[26] |
WANG S, ZHOU S. Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2, under UV and visible-light irradiation[J]. Journal of Hazardous Materials, 2011, 185(1): 77-85.
|
[27] |
HONG W, HOU W, WANG J, et al. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix[J]. Journal of Power Sources, 2010, 195(13): 4104-4113.
|
[28] |
KOROSI L, PAPP S, BERTOTI I, et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2[J]. Chemistry of Materials, 2007, 19(19): 4811-4819.
|
[29] |
GOPAL N O, LO H H, KE T F, et al. Visible light active phosphorus-doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation[J]. Journal of Physical Chemistry C, 2012, 116(30): 16191-16197.
|
[30] |
NIU J, LU P, KANG M, et al. P-doped TiO2, with superior visible-light activity prepared by rapid microwave hydrothermal method[J]. Applied Surface Science, 2014, 319(1): 99-106.
|
[31] |
YU J C, ZHANG L Z, ZHENG Z, et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry of Materials, 2003, 15(11): 2280-2286.
|
[32] |
XIA Y, JIANG Y, LI F, et al. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2[J]. Applied Surface Science, 2014, 289(12): 306-315.
|
[33] |
PLECIS A, SCHOCH R B, RENAUD P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip[J]. Nano Letters, 2005, 5(6): 1147-1155.
|
[34] |
MOON S H, YUN S H. Process integration of electrodialysis for a cleaner environment[J]. Current Opinion in Chemical Engineering, 2014, 4: 25-31.
|
[35] |
LUO J, WU C, XU T, et al. Diffusion dialysis-concept, principle and applications[J]. Journal of Membrane Science, 2011, 366(1): 1-16.
|