[1] 夏汉平. 人工湿地处理污水的机理与效率[J]. 生态学杂志, 2002, 21(4): 51-59.
[2] PALFY T G, MOLLE P, LANGERGRABER G, et al. Simulation of constructed wetlands treating combined sewer ower flow using hydrus/CW 2D[J]. Ecologocal Engineering, 2016, 87: 340-347.
[3] SIMS A, ZHANG Y Y, GALARAJ S, et al. Toward the development of microbial indicators for wetland assessment[J]. Water Research, 2013, 47(5): 1711-1725.
[4] COOPER P F, BOON A G. The Use of Phragmites for Wastewater Treatment by the Root Zone Method Aquatic Plants for Water Treatmentand Resource Recovery[M]. Orlando, Florida USA: Magnolia Publishing Company, 1987.
[5] 谢静怡, 李永峰, 郑阳. 环境生物电化学原理与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[6] LOGAN B E, HAMELERS B, ROZENDAL R A, et al. Microbial fuel cells:Methodology and technology[J]. Environmental Technology, 2006, 40(17): 5181-5192.
[7] SCHAMPHELAIRE L DE, RABAEY K, BOECKX P, et al. Outlook for benefits of sedimentmicrobial fuel cells with two bio-electrodes[J]. Microbial Biotechnology, 2008, 1(6): 446-462.
[8] LI Y, WU Y, LIU B, et al. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system[J]. Bioresource Technology, 2015, 192: 238-246.
[9] LI Y, WU Y, PURANIK S, et al. Metals as electron acceptors in single-chamber microbial fuel cells[J]. Journal of Power Sources, 2014, 269: 430-439.
[10] YADAV A K, DASH P, MOHANTY A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J]. Ecological Engineering, 2012, 47(5): 126-131.
[11] CHEN Z, HUANG Y, LIANG J, et al. A novel sediment microbial fuelcell with a biocathode in the rice rhizosphere[J]. Bioresource Technology, 2012, 108: 55-59.
[12] FANG Z, SONG H L, CANG N, et al. Performance of microbial fuel cellcoupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J]. Bioresource Technology, 2013, 144: 165-171.
[13] 袁惠民, 杜绿君. 啤酒技术及管理[M]. 北京: 中国轻工业出版社, 1994.
[14] 曹敬华, 黄铭国. 生物接触氧化法处理啤酒生产废水的设计与运行[J]. 中国给水排水, 2008, 18(8): 84-85.
[15] LIU S, SONG H, WEI S, et al. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland: Microbial fuel cell systems[J]. Bioresource Technology, 2014, 166: 575-583.
[16] 章轶磊.微生物燃料电池强化处理高浓度有机废水[D]. 合肥: 合肥工业大学, 2012.
[17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[18] GE Z, LI J, XIAO L, et al. Recovery of electrical energy in microbial fuel cells: Brief review[J]. Environmental Technology, 2014, 1: 137 -141.
[19] 王同悦. 人工湿地型微生物燃料电池处理污水及生物产电性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[20] LIU H, RAMANATHAN R, BRUCEE L,et al. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental & Science Technonogy, 2004, 38: 2281-2285.
[21] 周少奇. 氨氮厌氧氧化的微生物反应机理[J]. 华南理工大学学报(自然科学版), 2000, 28(11): 16-19.
[22] HULTBERG M, BODIN H. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction[J]. Environmental Biotechnology, 2017, 101: 4791-4798.
[23] LI Y, WILLIAMS I, XU Z, et al. Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)[J]. Applied Energy, 2016, 163: 352-360.
[24] 李晓婷. UASB-CASS 组合工艺处理啤酒生产废水工程实例[J]. 工业水处理, 2016, 36(3): 93-104.
[25] HU Y S, ZHAO Y Q, RYMSZEWICZ A, et al. Robust biological nitrogen removal by creating multiple tides in a single bedtidal flow constructed wetland[J]. Science of the Total Environment, 2014, 470-471: 1197-1204.