多孔MoS2/g-C3N4材料对水环境中四环素的降解

刘阳, 高生旺, 王丽君, 朱建超, 高红, 夏训峰. 多孔MoS2/g-C3N4材料对水环境中四环素的降解[J]. 环境工程学报, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155
引用本文: 刘阳, 高生旺, 王丽君, 朱建超, 高红, 夏训峰. 多孔MoS2/g-C3N4材料对水环境中四环素的降解[J]. 环境工程学报, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155
LIU Yang, GAO Shengwang, WANG Lijun, ZHU Jianchao, GAO Hong, XIA Xunfeng. Tetracycline degradation in aqueous solution by porous MoS2/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155
Citation: LIU Yang, GAO Shengwang, WANG Lijun, ZHU Jianchao, GAO Hong, XIA Xunfeng. Tetracycline degradation in aqueous solution by porous MoS2/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155

多孔MoS2/g-C3N4材料对水环境中四环素的降解

  • 基金项目:

    国家科技支撑计划课题2014BAL02B02国家科技支撑计划课题(2014BAL02B02)

Tetracycline degradation in aqueous solution by porous MoS2/g-C3N4

  • Fund Project:
  • 摘要: 通过浸渍-高温煅烧法制备多孔MoS2/g-C3N4光催化剂,采用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、N2吸附-解吸、紫外-可见光(UV-vis)漫反射吸收光谱对材料进行表征;并在可见光照射下,对四环素(TC)进行光催化降解。结果表明,催化剂量为2.0 g·L-1、pH为5.0时,对TC的去除效果最好,可见光照射180 min,MoS2/g-C3N4(1.0%-MC)复合材料对TC的降解率可达80.6%。反应完成后,复合材料循环利用5次,其降解效率仍保持在70.0%以上。浸渍-高温煅烧法所制备的MoS2/g-C3N4光催化剂具有良好的应用前景。
  • 加载中
  • [1] SAFARI G H, HOSEINI M, SEYEDSALEHI M, et al. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution[J]. International Journal of Environmental Science & Technology, 2015, 12(2): 603-616.
    [2] WAMMER K H, SLATTERY M T, STEMIG A M, et al. Tetracycline photolysis in natural waters: Loss of antibacterial activity[J]. Chemosphere, 2011, 85: 1505-1510.
    [3] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11: 209-227.
    [4] JIANG W T, CHANG P H, WANG Y S, et al. Sorption and desorption of tetracycline on layered manganese dioxide birnessite[J]. International Journal of Environmental Science & Technology, 2015, 12(5): 1695-1704.
    [5] 邓玉, 倪福全. 水环境中抗生素残留及其危害[J]. 南水北调与水利科技, 2011, 9(3): 96-100.
    [6] KIM I, TANAKA H. Photodegradation characteristics of PPCPs in water with UV treatment[J]. Environment International, 2009, 35(5): 793-802.
    [7] LóPEZ-PE?ALVER J J, SáNCHEZ-POLO M, GóMEZ-PACHECO C V, et al. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10): 1325-1333.
    [8] HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:A review[J]. Journal of Environmental Management, 2011, 92(10): 2304-2347.
    [9] LI J, LIU E, MA Y, et al. Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity[J]. Applied Surface Science, 2016, 364: 694-702.
    [10] CAO Y, GAO Q, LI Q, et al. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity[J]. RSC Advances, 2017, 7(65): 40727-40733.
    [11] MBOULA V M, HéQUET V, GRU Y, et al. Assessment of the efficiency of photocatalysis on tetracycline biodegradation[J]. Journal of Hazardous Material, 2012, 209-210(4): 355-364.
    [12] HU J, CHENG W, HUANG S, et al. First-principles modeling of nonlinear optical properties of C3N4 polymorphs[J]. Applied Physics Letters, 2006, 89(26): 841-853.
    [13] CHEN Y, LIN B, WANG H, et al. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts[J]. Chemical Engineering Journal, 2016, 286: 339-346.
    [14] PATNAIK S, MARTHA S, PARIDA K M. An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production[J]. RSC Advances, 2016, 6(52): 46929-46951.
    [15] LU D, WANG H, ZHAO X, et al. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1436-1445.
    [16] LI H, YIN Z, HE Q, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63-67.
    [17] HWANG H, KIM H, CHO J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2013, 11(11): 4826-4830.
    [18] HOU Y D, LAURSEN A B, ZHANG J S, et al. Layered nanojunctions for hydrogen-evolution catalysis[J]. Angewandte Chemie International Edition, 2013, 52(13): 3621-3625.
    [19] ANSARI S A, CHO M H. Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications[J]. Scientific Reports, 2017, 7:43055-43065.
    [20] LI N, ZHOU J, SHENG Z, et al. Molten salt-mediated formation of g-C3N4-MoS2, for visible-light-driven photocatalytic hydrogen evolution[J]. Applied Surface Science, 2017, 430: 218-224.
    [21] TIAN Y, GE L, WANG K, et al. Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity[J]. Materials Characterization, 2014, 87(17): 70-73.
    [22] LI Q, ZHANG N, YANG Y, et al. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures[J]. Langmuir, 2014, 30(29): 8965-8972.
    [23] AHMADI M, RAMEZANI M H, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186: 55-63.
    [24] WANG P, YAP P S, LIM T T. C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation[J]. Applied Catalysis A: General, 2011, 399(1): 252-261.
    [25] WANG Y, ZHANG H, CHEN L. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor[J]. Catalysis Today, 2011, 175(1): 283-292.
  • 加载中
计量
  • 文章访问数:  4909
  • HTML全文浏览数:  4731
  • PDF下载数:  231
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15
刘阳, 高生旺, 王丽君, 朱建超, 高红, 夏训峰. 多孔MoS2/g-C3N4材料对水环境中四环素的降解[J]. 环境工程学报, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155
引用本文: 刘阳, 高生旺, 王丽君, 朱建超, 高红, 夏训峰. 多孔MoS2/g-C3N4材料对水环境中四环素的降解[J]. 环境工程学报, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155
LIU Yang, GAO Shengwang, WANG Lijun, ZHU Jianchao, GAO Hong, XIA Xunfeng. Tetracycline degradation in aqueous solution by porous MoS2/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155
Citation: LIU Yang, GAO Shengwang, WANG Lijun, ZHU Jianchao, GAO Hong, XIA Xunfeng. Tetracycline degradation in aqueous solution by porous MoS2/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 818-825. doi: 10.12030/j.cjee.201809155

多孔MoS2/g-C3N4材料对水环境中四环素的降解

  • 1. 昆明理工大学建筑工程学院,昆明 650500
  • 2. 中国环境科学研究院,北京 100012
基金项目:

国家科技支撑计划课题2014BAL02B02国家科技支撑计划课题(2014BAL02B02)

摘要: 通过浸渍-高温煅烧法制备多孔MoS2/g-C3N4光催化剂,采用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、N2吸附-解吸、紫外-可见光(UV-vis)漫反射吸收光谱对材料进行表征;并在可见光照射下,对四环素(TC)进行光催化降解。结果表明,催化剂量为2.0 g·L-1、pH为5.0时,对TC的去除效果最好,可见光照射180 min,MoS2/g-C3N4(1.0%-MC)复合材料对TC的降解率可达80.6%。反应完成后,复合材料循环利用5次,其降解效率仍保持在70.0%以上。浸渍-高温煅烧法所制备的MoS2/g-C3N4光催化剂具有良好的应用前景。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回