[1] |
SAFARI G H, HOSEINI M, SEYEDSALEHI M, et al. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution[J]. International Journal of Environmental Science & Technology, 2015, 12(2): 603-616.
|
[2] |
WAMMER K H, SLATTERY M T, STEMIG A M, et al. Tetracycline photolysis in natural waters: Loss of antibacterial activity[J]. Chemosphere, 2011, 85: 1505-1510.
|
[3] |
DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11: 209-227.
|
[4] |
JIANG W T, CHANG P H, WANG Y S, et al. Sorption and desorption of tetracycline on layered manganese dioxide birnessite[J]. International Journal of Environmental Science & Technology, 2015, 12(5): 1695-1704.
|
[5] |
邓玉, 倪福全. 水环境中抗生素残留及其危害[J]. 南水北调与水利科技, 2011, 9(3): 96-100.
|
[6] |
KIM I, TANAKA H. Photodegradation characteristics of PPCPs in water with UV treatment[J]. Environment International, 2009, 35(5): 793-802.
|
[7] |
LóPEZ-PE?ALVER J J, SáNCHEZ-POLO M, GóMEZ-PACHECO C V, et al. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10): 1325-1333.
|
[8] |
HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:A review[J]. Journal of Environmental Management, 2011, 92(10): 2304-2347.
|
[9] |
LI J, LIU E, MA Y, et al. Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity[J]. Applied Surface Science, 2016, 364: 694-702.
|
[10] |
CAO Y, GAO Q, LI Q, et al. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity[J]. RSC Advances, 2017, 7(65): 40727-40733.
|
[11] |
MBOULA V M, HéQUET V, GRU Y, et al. Assessment of the efficiency of photocatalysis on tetracycline biodegradation[J]. Journal of Hazardous Material, 2012, 209-210(4): 355-364.
|
[12] |
HU J, CHENG W, HUANG S, et al. First-principles modeling of nonlinear optical properties of C3N4 polymorphs[J]. Applied Physics Letters, 2006, 89(26): 841-853.
|
[13] |
CHEN Y, LIN B, WANG H, et al. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts[J]. Chemical Engineering Journal, 2016, 286: 339-346.
|
[14] |
PATNAIK S, MARTHA S, PARIDA K M. An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production[J]. RSC Advances, 2016, 6(52): 46929-46951.
|
[15] |
LU D, WANG H, ZHAO X, et al. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1436-1445.
|
[16] |
LI H, YIN Z, HE Q, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63-67.
|
[17] |
HWANG H, KIM H, CHO J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2013, 11(11): 4826-4830.
|
[18] |
HOU Y D, LAURSEN A B, ZHANG J S, et al. Layered nanojunctions for hydrogen-evolution catalysis[J]. Angewandte Chemie International Edition, 2013, 52(13): 3621-3625.
|
[19] |
ANSARI S A, CHO M H. Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications[J]. Scientific Reports, 2017, 7:43055-43065.
|
[20] |
LI N, ZHOU J, SHENG Z, et al. Molten salt-mediated formation of g-C3N4-MoS2, for visible-light-driven photocatalytic hydrogen evolution[J]. Applied Surface Science, 2017, 430: 218-224.
|
[21] |
TIAN Y, GE L, WANG K, et al. Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity[J]. Materials Characterization, 2014, 87(17): 70-73.
|
[22] |
LI Q, ZHANG N, YANG Y, et al. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures[J]. Langmuir, 2014, 30(29): 8965-8972.
|
[23] |
AHMADI M, RAMEZANI M H, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186: 55-63.
|
[24] |
WANG P, YAP P S, LIM T T. C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation[J]. Applied Catalysis A: General, 2011, 399(1): 252-261.
|
[25] |
WANG Y, ZHANG H, CHEN L. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor[J]. Catalysis Today, 2011, 175(1): 283-292.
|