参考文献 1
PULICHARLAR, BRARS K, DROGUIP, et al. Removal processes of antibiotics in waters and wastewaters: Crucial link to physical-chemical properties and degradation[J]. Journal of Hazardous Toxic & Radioactive Waste, 2015, 19(4): 04015008.
参考文献 2
杨晓芳, 杨涛, 王莹, 等. 四环素类抗生素污染现状及其环境行为研究进展[J]. 环境工程, 2014, 32(2): 123-127.
参考文献 3
CENGİZM, BALCİOGLUI, ORUCH H. Detection of oxytetracycline and chlortetracycline residues in agricultural fields in Turkey[J]. Journal of Biological & Environmental Sciences, 2010, 4(10): 23-27.
参考文献 4
DAGHRIRR, DROGUIP. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
参考文献 5
SIMAZAKID, KUBOTAR, SUZUKIT, et al. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health[J]. Water Research, 2015, 76: 187-200.
参考文献 6
ORGANIZATIONW H. Antimicrobial resistance: Global report on surveillance[J]. Australasian Medical Journal, 2014, 7(5): 238-239.
参考文献 7
MA W L, QIR, ZHANGY, et al. Performance of a successive hydrolysis, denitrification and nitrification system for simultaneous removal of COD and nitrogen from terramycin production wastewater[J]. Biochemical Engineering Journal, 2009, 45(1): 30-34.
参考文献 8
MA W , YANGM , WANGJ , et al. Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification[J]. Environmental Technology Letters, 2002, 23(6): 685-694.
参考文献 9
张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 123-127.
参考文献 10
KEMPERN. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1): 1-13.
参考文献 11
OTURANN, WUJ, ZHANGH, et al. Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials[J]. Applied Catalysis B: Environmental, 2013, 140-141: 92-97.
参考文献 12
ZHENGY, HUANGM H, CHENL, et al. Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes[J]. Desalination, 2015, 359: 113-122.
参考文献 13
SIRÉSI, BRILLASE. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review[J]. Environment International, 2012, 40: 212-229.
参考文献 14
李喆钦, 周庆, 李爱民. 水体中四环素类抗生素的去除技术研究进展[J]. 环境保护科学, 2012, 38(4): 15-18.
参考文献 15
DAGHRIRR, DROGUIP. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
参考文献 16
OUAISSAY A, CHABANIM, AMRANEA, et al. Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 177-184.
参考文献 17
BARANW, ADAMEKE, JAJKOM, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere, 2017, 194: 381-389.
参考文献 18
WANGH, YAOH, SUNP Z, et al. Transformation of tetracycline antibiotics and Fe(II)/(III) species induced by their complexation[J]. Environmental Science & Technology, 2015, 50(1): 145-153.
参考文献 19
WANGH, YAOH, SUNP, et al. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation[J]. Chemosphere, 2015 , 119(2): 1255-1261.
参考文献 20
杨旭, 王建华. 四环素类金属离子配合物应用研究进展[J]. 食品工业科技, 2016, 37(11): 362-366.
参考文献 21
DANESHVARN, OLADEGARAGOZEA, DJAFARZADEHN. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters[J]. Journal of Hazardous Materials, 2006, 129(1): 116-122.
参考文献 22
张峰振, 杨波, 张鸿, 等. 电絮凝法进行废水处理的研究进展[J]. 工业水处理, 2012, 32(12): 11-16.
参考文献 23
ZAIEDM, BELLAKHALN. Electrocoagulation treatment of black liquor from paper industry[J]. Journal of Hazardous Materials, 2009, 163(2/3): 995-1000.
参考文献 24
HEIDMANNI, CALMANOW. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation[J]. Journal of Hazardous Materials, 2008, 152(3): 934-941.
参考文献 25
LINARESC F, MARÍAB. Interaction between antimicrobial drugs and antacid based on cancrinite-type zeolite[J]. Microporous & Mesoporous Materials, 2006, 96(1): 141-148.
参考文献 26
文美琼, 李露. 四环素-铁(Ⅲ)配合物与DNA相互作用的吸收光谱研究[J]. 光谱实验室, 2008(2): 226-228.
参考文献 27
熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566.
参考文献 28
杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 14-22.
参考文献 29
付丹丹. 腐殖酸对A-羟基氧化铁、Γ-羟基氧化铁吸附砷的影响研究[D]. 上海: 华东师范大学, 2017.
参考文献 30
孙丽华, 俞天敏, 齐晓璐, 等. 原位生成羟基氧化铁凝聚吸附除磷影响因素研究[J]. 给水排水, 2015(7): 128-132.

电絮凝法去除水中四环素的效能及机理

高雪, 吕建波, 苏润西, 郝雅荣, 杨金梅, 孙力平. 电絮凝法去除水中四环素的效能及机理[J]. 环境工程学报, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
引用本文: 高雪, 吕建波, 苏润西, 郝雅荣, 杨金梅, 孙力平. 电絮凝法去除水中四环素的效能及机理[J]. 环境工程学报, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
GAO Xue, LYU Jianbo, SU Runxi, HAO Yarong, YANG Jingmei, SUN Liping. Performance and mechanism of electrocoagulation process for tetracycline removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
Citation: GAO Xue, LYU Jianbo, SU Runxi, HAO Yarong, YANG Jingmei, SUN Liping. Performance and mechanism of electrocoagulation process for tetracycline removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006

电絮凝法去除水中四环素的效能及机理

  • 基金项目:

    国家自然科学基金资助项目51108298,5148292

    天津市自然科学基金资助项目12JCYBJC14800国家自然科学基金资助项目(51108298,5148292)

    天津市自然科学基金资助项目(12JCYBJC14800)

Performance and mechanism of electrocoagulation process for tetracycline removal from water

  • Fund Project:
  • 摘要: 为了探讨电絮凝法去除水中四环素的效能及机理,分别研究了电极材料、电流强度、电导率和四环素初始浓度等参数对电絮凝去除四环素的影响;并通过氧化性能评估实验、UV-vis光谱分析、X射线衍射(XRD)等方法探究电絮凝去除四环素的性能。结果表明:使用铁电极(面积300 mm × 80 mm,厚2 mm),对初始浓度0.05 mmol·L-1的四环素模拟废水进行处理,在电流强度为0.3 A、电导率为1 000 μS·cm-1、电解15 min时,四环素和总有机碳(TOC)的去除率分别可达99.6%和79.8%,并且约41.9%的四环素通过氧化降解作用从水中被去除。使用铁电极电絮凝技术能够快速高效地去除四环素,具有高氧化率、低成本的特点。
  • 加载中
  • [1] PULICHARLA R, BRAR S K, DROGUI P, et al. Removal processes of antibiotics in waters and wastewaters: Crucial link to physical-chemical properties and degradation[J]. Journal of Hazardous Toxic & Radioactive Waste, 2015, 19(4): 04015008.
    [2] 杨晓芳, 杨涛, 王莹, 等. 四环素类抗生素污染现状及其环境行为研究进展[J]. 环境工程, 2014, 32(2): 123-127.
    [3] CENGI?Z M, BALCI?OGLU I, ORUC H H. Detection of oxytetracycline and chlortetracycline residues in agricultural fields in Turkey[J]. Journal of Biological & Environmental Sciences, 2010, 4(10): 23-27.
    [4] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
    [5] SIMAZAKI D, KUBOTA R, SUZUKI T, et al. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health[J]. Water Research, 2015, 76: 187-200.
    [6] ORGANIZATION W H. Antimicrobial resistance: Global report on surveillance[J]. Australasian Medical Journal, 2014, 7(5): 238-239.
    [7] MA W L, QI R, ZHANG Y, et al. Performance of a successive hydrolysis, denitrification and nitrification system for simultaneous removal of COD and nitrogen from terramycin production wastewater[J]. Biochemical Engineering Journal, 2009, 45(1): 30-34.
    [8] MA W , YANG M , WANG J , et al. Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification[J]. Environmental Technology Letters, 2002, 23(6): 685-694.
    [9] 张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 123-127.
    [10] KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1): 1-13.
    [11] OTURAN N, WU J, ZHANG H, et al. Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials[J]. Applied Catalysis B: Environmental, 2013, 140-141: 92-97.
    [12] ZHENG Y, HUANG M H, CHEN L, et al. Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes[J]. Desalination, 2015, 359: 113-122.
    [13] SIRéS I, BRILLAS E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review[J]. Environment International, 2012, 40: 212-229.
    [14] 李喆钦, 周庆, 李爱民. 水体中四环素类抗生素的去除技术研究进展[J]. 环境保护科学, 2012, 38(4): 15-18.
    [15] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
    [16] OUAISSA Y A, CHABANI M, AMRANE A, et al. Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 177-184.
    [17] BARAN W, ADAMEK E, JAJKO M, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere, 2017, 194: 381-389.
    [18] WANG H, YAO H, SUN P Z, et al. Transformation of tetracycline antibiotics and Fe(II)/(III) species induced by their complexation[J]. Environmental Science & Technology, 2015, 50(1): 145-153.
    [19] WANG H, YAO H, SUN P, et al. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation[J]. Chemosphere, 2015 , 119(2): 1255-1261.
    [20] 杨旭, 王建华. 四环素类金属离子配合物应用研究进展[J]. 食品工业科技, 2016, 37(11): 362-366.
    [21] DANESHVAR N, OLADEGARAGOZE A, DJAFARZADEH N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters[J]. Journal of Hazardous Materials, 2006, 129(1): 116-122.
    [22] 张峰振, 杨波, 张鸿, 等. 电絮凝法进行废水处理的研究进展[J]. 工业水处理, 2012, 32(12): 11-16.
    [23] ZAIED M, BELLAKHAL N. Electrocoagulation treatment of black liquor from paper industry[J]. Journal of Hazardous Materials, 2009, 163(2/3): 995-1000.
    [24] HEIDMANN I, CALMANO W. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation[J]. Journal of Hazardous Materials, 2008, 152(3): 934-941.
    [25] LINARES C F, MARíA B. Interaction between antimicrobial drugs and antacid based on cancrinite-type zeolite[J]. Microporous & Mesoporous Materials, 2006, 96(1): 141-148.
    [26] 文美琼, 李露. 四环素-铁(Ⅲ)配合物与DNA相互作用的吸收光谱研究[J]. 光谱实验室, 2008(2): 226-228.
    [27] 熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566.
    [28] 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 14-22.
    [29] 付丹丹. 腐殖酸对A-羟基氧化铁、Γ-羟基氧化铁吸附砷的影响研究[D]. 上海: 华东师范大学, 2017.
    [30] 孙丽华, 俞天敏, 齐晓璐, 等. 原位生成羟基氧化铁凝聚吸附除磷影响因素研究[J]. 给水排水, 2015(7): 128-132.
  • 期刊类型引用(4)

    1. 龚世飞,肖能武,丁武汉,郭元平,叶青松,王巍,李虎. 丹江口水库核心水源区化肥施用分布特征及其环境风险评价. 长江流域资源与环境. 2022(10): 2259-2271 . 百度学术
    2. 龚世飞,丁武汉,居学海,肖能武,叶青松,黄进,李虎. 典型农业小流域面源污染源解析与控制策略——以丹江口水源涵养区为例. 中国农业科学. 2021(18): 3919-3931 . 百度学术
    3. 王超,张洪,雷俊山,贾海燕,雷沛,尹炜. 南水北调中线水源地陡坡型库岸生态屏障构建. 环境工程学报. 2020(12): 3243-3250 . 本站查看
    4. 龚世飞,丁武汉,肖能武,郭元平,叶青松,王巍,李虎. 丹江口水库核心水源区典型流域农业面源污染特征. 农业环境科学学报. 2019(12): 2816-2825 . 百度学术

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.9 %DOWNLOAD: 6.9 %FULLTEXT: 77.0 %FULLTEXT: 77.0 %META: 16.1 %META: 16.1 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 82.9 %其他: 82.9 %Anshan: 0.1 %Anshan: 0.1 %Anwo: 0.0 %Anwo: 0.0 %Ashburn: 0.2 %Ashburn: 0.2 %Baoding: 0.0 %Baoding: 0.0 %Beijing: 6.0 %Beijing: 6.0 %Beishijiawu: 0.0 %Beishijiawu: 0.0 %Bizidian: 0.0 %Bizidian: 0.0 %Boulder: 0.1 %Boulder: 0.1 %Busan: 0.0 %Busan: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 0.1 %Changsha: 0.1 %Chanshan: 0.0 %Chanshan: 0.0 %Chelsea: 0.1 %Chelsea: 0.1 %Chemnitz: 0.0 %Chemnitz: 0.0 %Chicago: 0.1 %Chicago: 0.1 %Chongqing: 0.1 %Chongqing: 0.1 %Dajingyu: 0.1 %Dajingyu: 0.1 %Dalian: 0.6 %Dalian: 0.6 %Dazhou: 0.0 %Dazhou: 0.0 %Dishan: 0.1 %Dishan: 0.1 %Dongguan: 0.0 %Dongguan: 0.0 %Gaocheng: 0.1 %Gaocheng: 0.1 %Guangzhou: 0.1 %Guangzhou: 0.1 %Guangzhou Shi: 0.1 %Guangzhou Shi: 0.1 %Haikou: 0.1 %Haikou: 0.1 %Handan: 0.0 %Handan: 0.0 %Hangzhou: 0.2 %Hangzhou: 0.2 %Hankou: 0.0 %Hankou: 0.0 %Harbin: 0.2 %Harbin: 0.2 %Hartford: 0.0 %Hartford: 0.0 %Hefei: 0.1 %Hefei: 0.1 %Hotan: 0.0 %Hotan: 0.0 %Jinan: 0.1 %Jinan: 0.1 %Jinrongjie: 0.4 %Jinrongjie: 0.4 %Kunshan: 0.0 %Kunshan: 0.0 %Lanzhou: 0.0 %Lanzhou: 0.0 %Liuying: 0.0 %Liuying: 0.0 %luohe shi: 0.1 %luohe shi: 0.1 %Mitaka: 0.1 %Mitaka: 0.1 %Montreal: 0.0 %Montreal: 0.0 %Mountain View: 0.2 %Mountain View: 0.2 %Nanchang: 0.0 %Nanchang: 0.0 %Nankai: 0.1 %Nankai: 0.1 %Nanyang: 0.1 %Nanyang: 0.1 %New Taipei: 0.0 %New Taipei: 0.0 %Newark: 0.5 %Newark: 0.5 %Ningbo: 0.1 %Ningbo: 0.1 %Plainsboro: 0.1 %Plainsboro: 0.1 %Qingdao: 0.2 %Qingdao: 0.2 %Qinnan: 0.0 %Qinnan: 0.0 %Shanghai: 0.3 %Shanghai: 0.3 %Shangqiu: 0.0 %Shangqiu: 0.0 %Shenyang: 0.1 %Shenyang: 0.1 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Taipei: 0.2 %Taipei: 0.2 %Taiyuan: 0.1 %Taiyuan: 0.1 %The Bronx: 0.2 %The Bronx: 0.2 %Tianjin: 0.3 %Tianjin: 0.3 %Tokyo: 0.1 %Tokyo: 0.1 %Wuhan: 0.0 %Wuhan: 0.0 %Xi'an: 0.1 %Xi'an: 0.1 %Xiamen: 0.0 %Xiamen: 0.0 %Xiangfan: 0.0 %Xiangfan: 0.0 %Xuzhou: 0.1 %Xuzhou: 0.1 %XX: 3.1 %XX: 3.1 %Yingchuan: 0.2 %Yingchuan: 0.2 %Yuncheng: 0.0 %Yuncheng: 0.0 %Zhangzhou: 0.0 %Zhangzhou: 0.0 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %上海: 0.1 %上海: 0.1 %俄克拉何马城: 0.0 %俄克拉何马城: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.3 %北京: 0.3 %大连: 0.1 %大连: 0.1 %宁德: 0.0 %宁德: 0.0 %成都: 0.0 %成都: 0.0 %杭州: 0.1 %杭州: 0.1 %沈阳: 0.0 %沈阳: 0.0 %深圳: 0.2 %深圳: 0.2 %荆州: 0.0 %荆州: 0.0 %西安: 0.0 %西安: 0.0 %贵阳: 0.0 %贵阳: 0.0 %郑州: 0.2 %郑州: 0.2 %长沙: 0.0 %长沙: 0.0 %青岛: 0.0 %青岛: 0.0 %其他AnshanAnwoAshburnBaodingBeijingBeishijiawuBizidianBoulderBusanChang'anChangshaChanshanChelseaChemnitzChicagoChongqingDajingyuDalianDazhouDishanDongguanGaochengGuangzhouGuangzhou ShiHaikouHandanHangzhouHankouHarbinHartfordHefeiHotanJinanJinrongjieKunshanLanzhouLiuyingluohe shiMitakaMontrealMountain ViewNanchangNankaiNanyangNew TaipeiNewarkNingboPlainsboroQingdaoQinnanShanghaiShangqiuShenyangShijiazhuangTaipeiTaiyuanThe BronxTianjinTokyoWuhanXi'anXiamenXiangfanXuzhouXXYingchuanYunchengZhangzhouZhengzhou上海俄克拉何马城内网IP北京大连宁德成都杭州沈阳深圳荆州西安贵阳郑州长沙青岛Highcharts.com
计量
  • 文章访问数:  5478
  • HTML全文浏览数:  5273
  • PDF下载数:  205
  • 施引文献:  5
出版历程
  • 刊出日期:  2019-04-15
高雪, 吕建波, 苏润西, 郝雅荣, 杨金梅, 孙力平. 电絮凝法去除水中四环素的效能及机理[J]. 环境工程学报, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
引用本文: 高雪, 吕建波, 苏润西, 郝雅荣, 杨金梅, 孙力平. 电絮凝法去除水中四环素的效能及机理[J]. 环境工程学报, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
GAO Xue, LYU Jianbo, SU Runxi, HAO Yarong, YANG Jingmei, SUN Liping. Performance and mechanism of electrocoagulation process for tetracycline removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006
Citation: GAO Xue, LYU Jianbo, SU Runxi, HAO Yarong, YANG Jingmei, SUN Liping. Performance and mechanism of electrocoagulation process for tetracycline removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 826-834. doi: 10.12030/j.cjee.201810006

电絮凝法去除水中四环素的效能及机理

  • 1. 天津城建大学环境与市政工程学院,天津 300384
  • 2. 烟台大学土木工程学院,烟台 264005
基金项目:

国家自然科学基金资助项目51108298,5148292

天津市自然科学基金资助项目12JCYBJC14800国家自然科学基金资助项目(51108298,5148292)

天津市自然科学基金资助项目(12JCYBJC14800)

摘要: 为了探讨电絮凝法去除水中四环素的效能及机理,分别研究了电极材料、电流强度、电导率和四环素初始浓度等参数对电絮凝去除四环素的影响;并通过氧化性能评估实验、UV-vis光谱分析、X射线衍射(XRD)等方法探究电絮凝去除四环素的性能。结果表明:使用铁电极(面积300 mm × 80 mm,厚2 mm),对初始浓度0.05 mmol·L-1的四环素模拟废水进行处理,在电流强度为0.3 A、电导率为1 000 μS·cm-1、电解15 min时,四环素和总有机碳(TOC)的去除率分别可达99.6%和79.8%,并且约41.9%的四环素通过氧化降解作用从水中被去除。使用铁电极电絮凝技术能够快速高效地去除四环素,具有高氧化率、低成本的特点。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回