Processing math: 100%

ZHANG Xiaoxiang, LI Jiaying, HE Qiuhang, SONG Xuening, SU Chang, JIN Zhengyu, WANG Kaijun. Quantitative evaluation of Limit of Technology(LOT) application potential by Improved System Readiness Level Assessment——A case study on projects of “Major Science and Technology Program for Water Pollution Control” and related technology combinations[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1145-1157. doi: 10.12030/j.cjee.202210118
Citation: ZHANG Xiaoxiang, LI Jiaying, HE Qiuhang, SONG Xuening, SU Chang, JIN Zhengyu, WANG Kaijun. Quantitative evaluation of Limit of Technology(LOT) application potential by Improved System Readiness Level Assessment——A case study on projects of “Major Science and Technology Program for Water Pollution Control” and related technology combinations[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1145-1157. doi: 10.12030/j.cjee.202210118

Quantitative evaluation of Limit of Technology(LOT) application potential by Improved System Readiness Level Assessment——A case study on projects of “Major Science and Technology Program for Water Pollution Control” and related technology combinations

  • Corresponding author: JIN Zhengyu, jzy@muc.edu.cn
  • Received Date: 25/10/2022
    Available Online: 10/04/2023
  • Sewage treatment to meet the demand of recycled water quality is increasing, and the technology suitable for the situation in our country has yet to be optimized as it gradually explores limit of technology (LOT) of sewage nutrition removal. This paper constructs an improved system readiness level (SRL) evaluation method based on the existing technology readiness level (TRL) and algorithm matrix, and relies on the LOT alternative technology combinations related to the national "Water Pollution Control and Treatment Science and Technology Major projects" during the “11th Five-Year Plan”, “12th Five-Year Plan” and “13th Five-Year Plan” and other domestic and foreign alternative technology combinations that meet the requirements of LOT. By comprehensive quantitative evaluation of TRL and improved SRL, the current situation of the development of LOT technologies in our country is sorted out and 12 candidate technologies combinations are selected. Among the 12 selected LOT alternative technology combinations, the SRL value of “A2O+Deep-Bed Denite Filters Technology”, “A2O+MBBR+Coagulation Technology” and “A2O+Self-acctive Denitrification Technology+BAF” can reach 0.8~1, reaching the stage of production, operation and maintenance, which can be directly applied in production and generate high application benefits in the market. While the cost of TN and TP per unit mass removal of the three technology combinations is high, and the core functional processes are mainly traditional reactor technologies. Most of the single technology TRL levels are above 7, and most of the improved SRL values are between 0.6 and 0.8, which are in the stage of system development and verification. The relevant technology combinations are improving product stability for real market promotion. And most alternative technology combinations make the great use of the properties of ecological technologies such as plants and wetlands, which not only realizes strong synchronous nitrogen and phosphorus removal, but also has the market advantage of low operation and maintenance cost, which has the potential to be popularized.. The LOT alternative technology combinations basically realize the cost optimization and low carbon and low consumption technology operation mode, and meets the needs of waste water reclamation and the improvement of ecological environment.
  • 目前,针对土壤有机污染物的传统治理技术,通常难以达到去除低环PAHs的修复要求[1-2]。萘 (naphthalene,Nap) 作为一种具有致畸、致突变与致癌的典型低环半挥发性PAHs[3],研究其在土壤介质中的降解规律,并完善其修复治理技术,对于评估低环PAHs的环境风险和提出相应的污染管控措施具有重要的意义。

    近年来,过硫酸盐高级氧化技术在污染控制领域受到越来越多的关注[4-6],PS是一种强氧化剂,可以通过热[7-9]、碱[10-11]、过渡金属离子[12-14]、超声[15-17]和微波[18-21]等能量或材料进行活化。研究表明,提升温度可有效增加过硫酸盐的活性,但常规加热存在能耗高、效率低的问题[22]。微波诱导具有加热快速、能耗相对较低、无二次污染等优点[23-24],但缺少机理研究,且大多数人使用市售微波炉,单磁控管能量密度低,很难达到预期活化效果。

    工业上绝大多数情况使用多磁控管微波源提高微波功率,然而微波加热的不均匀性在很大程度上限制了微波技术的发展和应用[25]。微波加热不均匀的主要原因是电磁场强度分布不均匀[26]。目前,改善微波加热不均匀性的措施主要是通过改变谐振腔的尺寸及微波馈口数量[27]和相对位置[28],使谐振腔具有尽可能多的振荡模式[29],不同模式叠加后能够获得更加均匀的能量分布状态。本研究拟应用COMSOL Multiphysics[30-31]多物理场仿真软件优化谐振腔内电磁场分布,参照模拟结论,制备微波反应器,并通过MW诱导PS强化降解土壤中萘的实验研究,考察高浓度萘污染土壤的微波诱导修复效果及影响因素,以期为实现该技术的工程应用提供参考。

    实验所用试剂主要有过硫酸钠 (Na2S2O8) 、萘 (C10H8) 、甲醇 (CH3OH) 、氯化钠 (NaCl) 、石英砂 (SiO2) 、无水乙醇 (CH3CH2OH) 、磷酸 (H3PO4) 均为分析纯、高纯氮气 (N2,99.999%) 。实验所用土壤采自河北科技大学绿地,取表层约20 cm处土壤,去除土壤中根系等杂质后,研磨过60目筛后,在室内经自然风干储存备用。土壤理化性质如表1所示。

    表 1  土壤样品的基本理化性质
    Table 1.  Basic physical and chemical properties of soil samples
    pH水分/%有机质质量分数/%阳离子交换量/ (cmol·kg−1) 粒径分布/%
    砂粒粉粒黏粒
    8.364.373.455.4319.3771.359.28
     | Show Table
    DownLoad: CSV

    气相色谱仪 (7820A,安捷伦科技有限公司) 、自动顶空进样器 (7697A,安捷伦科技有限公司) 、气相色谱质谱联用仪 (7890B,安捷伦科技有限公司) 、数显水浴恒温振荡器 (SHA-B,常州荣华仪器制造有限公司) 、电子天平 (FA2004B,上海佑科仪器仪表有限公司) 、红外热成像仪 (DP-22,深圳点扬科技有限公司) 、微波反应器 (山东科宏微波能有限公司) 。

    1) 矩形谐振腔电磁场模拟。以COMSOL Multiphysics仿真软件构建出微波辐照多物理场仿真模型,通过模拟谐振腔内电磁场分布及土壤样品温度场分布情况,参照模拟结论,制备微波反应器,搭建微波诱导PS强化降解土壤中萘的实验平台。

    2) 单因素实验。分别对PS浓度0.2、0.5、0.8、1.0、1.2 mol·L−1,微波辐照时间3、6、10、15、20、30、40、60、80 min,温度40、60、80 ℃,土壤含水率8%、10%、12%、15%这4个影响因子进行单因素实验。为得到稳定可靠的结果,每组实验设置 3 组平行实验,确定各影响因素的最佳取值。

    3) 不同方式活化过硫酸盐的效果比较。对比微波诱导与常规电加热实验,探索同功率强度下的微波诱导和电热活化的不同费效关系,探索不同加热方式的能耗特征。同时,从反应动力学角度进行研究,通过反应速率对比,揭示活化能降低规律。

    微波诱导。取适量土样置于石英玻璃容器中,加入适量的过硫酸钠溶液,设置微波功率和辐照时间,实验结束后取出污染土样,立即装入22 mL顶空瓶中并加入10 mL饱和NaCl溶液,采用顶空-气相色谱仪测定其中萘含量。常规电热活化。除使用马弗炉设备外,其他与上述步骤相同。

    4) 土壤中萘的降解产物分析。实验使用自制微波反应器,在PS浓度1.0 mol·L−1、MW温度80 ℃、土壤含水率15%、MW处理60 min的条件下进行实验,分别在3、6、10、15、20、30、40、60 min 时收集气相样品,采用气相色谱-质谱联用仪 (GC-MS) 进行检测。

    1) 气相色谱仪 (GC-FID) 检测条件。柱箱初始温度为100 ℃,升温速率8 ℃·min−1升温至100 ℃ (保持1 min) ,升温速率20 ℃·min−1升温至200 ℃ (保持10 min) ;进样口温度220 ℃;检测器温度240 ℃。

    2) 气相色谱-质谱联用仪 (GC-MS) 检测条件。柱箱初始温度为35 ℃,升温速率15 ℃·min−1升温至150 ℃ (保持5 min) ,升温速率3 ℃·min−1到280 ℃ (保持2 min) ;进样口温度280 ℃,不分流;电子轰击源 (EI) ;离子原温度230 ℃;离子化能量70 eV。

    矩形谐振腔的模式数越多,谐振波型数量越多,为了取得较均匀的能量分布,应使矩形谐振腔具有尽可能多的振荡模式[32]

    1) 矩形谐振腔尺寸选择。假设在空间直角坐标系中矩形谐振腔具有无穷多个分离的震荡模式,每一种谐振模式对应一种场分布,对应唯一的谐振频率,矩形谐振腔的谐振频率如式(1)所示,对应在自由空间中的谐振波长如式(2)所示。

    f=C(ma)2+(nb)2+(pd)22 (1)
    λ=2(ma)2+(nb)2+(pd)2 (2)

    式中: a、b、d分别为谐振腔x、y、z方向上的长度;m、n、p 为矩形谐振腔模式系数,分别表示在a、b、d上分布的半驻波波长个数;C表示光速,取3×108 m∙s−1

    谐振波长λ大于工作波长的对应谐振模式应考虑为可存在的谐振模式[33]。根据式(1)、式(2)可求出满足上述限定条件的 m、n、p可能存在的组合数量,在工作频率为2.45 GHz条件下,取a = 400 mm,选取b = 300~400 mm和d = 400~500 mm范围内,借助VC++编写程序代码计算谐振腔模式数,当工作频率为2.45 GHz时,模式最多的腔体尺寸为400 mm×400 mm×480 mm。

    2) 矩形谐振腔建模。采用COMSOL Multiphysics多物理场仿真软件中RF模块,联合求解有限元边界条件下的麦克斯韦方程组和能量守恒方程,对谐振腔进行了微波场均匀性的仿真研究。谐振腔三维模型如图1所示。

    图 1  谐振腔三维模型图
    Figure 1.  3D model of resonator

    3) 网格划分。利用COMSOL Multiphysics构建整个有限元模型后,设置最大单元为0.024 47 m,最小单元为7.25×10−4 m,最大单元增长率为1.3,曲率因子为0.2,狭窄区域分辨率为1。网格划分如图2所示。

    图 2  谐振腔网格划分示意图
    Figure 2.  Grid division of resonant cavity

    4) 仿真理论。在利用 COMSOL Multiphysics模拟时主要涉及到了麦克斯韦方程和能量守恒方程的联立求解。通过求解一个特殊形式的麦克斯韦方程得到谐振腔内的三维电磁场强度分布,如式(3)所示。

    ×μ1r(×E)k20(εrjσωε0)E=0 (3)

    式中:E表示电场强度,V∙m−1μr表示相对磁导率,j是虚数单位;σ是电导率;ω是角频率;ϵr是相对介电常数;ϵ0是真空介电常数,取3×108 m∙s−1k0为真空中波数。

    传热场计算可由含非齐次项的偏微分方程式(4)给出。

    ρCPTt=(КT)+Q (4)

    式中:ρ表示密度,kg∙m−3CP表示比热容,J∙(kg∙K)−1,;К为热导率。

    1) 谐振腔内电磁场分布模拟。谐振腔电场平面分布如图3(a)所示。靠近腔体壁的区域电场强度较低,腔体内部区域电场强度较高,这说明谐振腔内部区域的微波功率密度高于靠近腔体壁的区域。并且谐振腔内部电场差值较小,表明腔体内的微波功率密度较一致。这可能是因为靠近腔体壁区域的电场叠加较少,微波源反射到箱体中央与其他磁控管的电场叠加较多,提高了电磁场的均匀性。图3(b)为谐振腔磁场平面分布图,磁场分布情况与电场类似。采用微波加热时,应将样品放在谐振腔的中心位置,以使介质最大程度的吸收能量,提高升温速率。

    图 3  谐振腔内电磁场平面分布图
    Figure 3.  Planar distribution of electromagnetic field in resonant cavity

    2) 模型加热温度分布模拟。微波反应器中样品温度分布如图4(a)所示。微波反应器中样品温度大部分处于60~80 ℃,温度分布均匀性较好。家用微波炉中样品温度分布如图4(b)所示。大部分样品温度集中在40~60 ℃,且分布均匀性较差。谐振腔负载土壤样品后,会导致电磁场分布改变,进而影响土壤温度分布。增加馈口数量和改变馈口位置可增加电磁场的模式数[34],减少驻波产生,以保证谐振腔内电磁场分布的均匀性。馈口不对称分布时,馈口本身及馈口间反射功率较小,提高了对土壤样品的加热效率及均匀性。

    图 4  谐振腔内土壤样品温度分布图
    Figure 4.  Temperature distribution diagram of soil sample in resonant cavity

    3) 微波反应器加热土壤实验。为了验证上述仿真结果的有效性,将土壤样品放入微波反应器中进行实验,并采用红外热成像仪测定土壤温度分布。结果如图5所示。土壤大部分区域温度在60 ℃左右,最高温度可达64.7 ℃。对比仿真结果显示,实验测得的土壤温度分布与仿真所得到的温度分布基本一致。

    图 5  土壤样品在微波反应器中温度分布图
    Figure 5.  Temperature distribution of soil sample in microwave reactor

    1) PS浓度对萘去除率的影响。PS浓度对萘去除率的影响如图6(a)所示。萘的去除率随PS浓度增加而增加。PS浓度为0.2 mol·L−1时,60 min后约24.2%的萘被去除,而当PS剂量增加到1.2 mol·L−1时,萘的去除率达到了97.5%。随着氧化剂初始浓度的增加,生成的硫酸根自由基水平会更高,从而提高萘的去除率。此外,土壤中的其他可氧化物也会与萘竞争硫酸根自由基[35],高水平的硫酸根自由基对于克服这一问题至关重要。然而,较高的氧化剂剂量可能会产生较高水平的硫酸盐,对土壤造成二次污染。其次,残留的过硫酸盐和硫酸根自由基本身对硫酸根自由基也会产生猝灭反应,反应方程式如式(5)、式(6)所示。

    图 6  单因素结果分析图
    Figure 6.  Single factor result analysis diagram
    SO4+SO4=S2O82 (5)
    SO4+S2O82=SO42+S2O8 (6)

    为实现低成本高效益的修复,并将修复过程对地下环境的负面影响降至最低。考虑经济因素及修复效果,选用1.0 mol·L−1的过硫酸盐溶液。

    2) 微波辐照时间对萘去除率的影响。微波辐照时间对萘去除率的影响如图6(b)所示。萘的去除率随辐照时间增加先快速升高后趋于平缓。0~30 min可降解70%左右的污染物,30~80 min降解了约23.5%的污染物。通常多环芳烃从土壤固体中的解吸表现出双相行为,具有初始快速阶段和随后的缓慢阶段[36]。因此,容易解吸的萘被过硫酸盐快速氧化,而强螯合萘的氧化受到土壤固体解吸的限制,需要更长的时间来降解。实验时60 min去除率到达92.2%,80 min时去除率为93.5%。综合污染物去除率和能耗因素,选择的微波辐照时间为60 min。

    3) 微波温度对萘去除率的影响。微波温度对萘去除率的影响如图6(c)所示。温度从40 ℃提高到80 ℃,60 min时萘的去除率从84.2%增加到95.3%。当温度升高时,一方面体系中的大量的过硫酸盐会更快被活化,可以产生更多的SO4-·;另一方面,温度升高会加速SO4-·与目标污染物分子之间的碰撞,进而促进污染物的降解。温度是影响PS活化过程中的一个重要因素,温度对过硫酸盐氧化降解多环芳烃的速率和效率有重要影响[37]。在标准大气压下,Nap的沸点为217.9 ℃,实验检测反应土壤的表观温度最高达到80 ℃,理论上萘很难从土壤中挥发。在微波诱导下,过硫酸盐及萘分子动能增加,含有碳-碳双键以及苯环的挥发性有机物很容易被氧化活性官能团降解,该结论与HUANG等[38]研究结论相似。

    4) 土壤含水率对萘去除率的影响。土壤含水率对萘去除率的影响如图6(d)所示。随着含水率从8%增加到15%,达到80 ℃的时间由12 min缩短到5 min,萘的去除率由71.9%提高到94.3%。由于水的存在,微波优先被含有过硫酸盐溶液的区域吸收[39],使该区域温度快速升高。在微波加热过程中,土壤水分逐渐转化为水蒸气,从而通过蒸馏去除污染物。同时,水蒸气的存在可以增加土壤孔隙度,有利于污染物的传质,土壤湿度的增加会提高污染物的去除效率,这与FALCIGLIA等[40]的观点一致。微波辐射使水极化,导致氢键快速断裂和重新定向[41],引起水分子之间氢键的高频变化,降低其粘度,有利于S2O82-扩散。

    通过GC-MS对MW/PS体系降解萘的产物进行分析,结果如表2所示。萘降解的中间产物主要包括1,2-二羟基萘、邻苯二甲酸、水杨酸、1,2-苯二酚、苯酚。

    表 2  萘降解的中间产物
    Table 2.  Intermediate products of naphthalene degradation
    序号化合物分子式分子量结构式
    11,2-DihydroxynaphthaleneC10H8O2160.17
    21,2-Benzenedicarboxylic acidC8H6O4166.13
    3Salicylic acidC7H6O4138.12
    4CatecholC6H6O2110.11
    5phenyl hydroxideC6H6O94.11
     | Show Table
    DownLoad: CSV

    在反应开始阶段,由于反应的快速进行,大量的SO4·与水反应生成HO·,由于萘的双环结构没有侧链,与HO·发生加成反应生成1,2-二羟基萘,进而在SO4-·的作用下,苯环开始断裂,生成邻苯二甲酸及水杨酸,这些中间体进一步被SO4-·氧化,生成苯酚,最后苯酚被氧化生成邻二苯酚,进一步开环形成小分子酸,最后分解为H2O及CO2。通过以上产物推测体系可能发生的降解途径如图7所示。

    图 7  土壤中萘在MW/PS体系下的降解途径
    Figure 7.  Degradation pathway of naphthalene in soil under MW/PS system

    1) 不同活化条件下萘去除效果研究。不同活化条件萘的去除率如图8(a)所示。60 min时微波诱导去除率为94.2%,常规电热活化去除率为80.2%,这可能与微波的高效加热性及强化效应有关。反应动力学计算如图8(b)所示。微波诱导的反应速率常数k为常规电热活化的1.6倍,证明微波除热效应外还具有一定的强化效应。微波除热效应以外,还存在量子层面的晶格震荡及不规律相变等强化效应[42-43]。利用微波诱导过硫酸盐时,偶极分子高频往复运动加热土壤的效应最为显著[44]。其次,在微波交变电场的作用下使得有机质胶体颗粒空隙结构改变,优化传质。同时,被吸附的有机污染物在微波作用下高频震动,更容易发生脱附,从而被氧化去除。微波的特定效应可以加速材料的扩散和传质,这与HINRIKUS等[45]的研究结果相同。

    图 8  不同条件下萘的去除率及反应速率常数
    Figure 8.  Removal rate and reaction rate constant of Nap under different conditions

    微波诱导过硫酸盐修复萘污染土壤机理如图9所示。土壤修复过程中,微波可使原子配位壳层结构变差,降低原子键级,改变量子间传质、传热环境,降低活化能[46-47],达到高效、节能的效果,以增强土壤中的过硫酸盐修复性能。

    图 9  微波诱导过硫酸盐修复萘污染土壤机理图
    Figure 9.  Mechanism diagram of repairing naphthalene contaminated soil with microwave induced persulfate

    2) 污染物去除动力学研究。通过动力学计算的方法对微波的强化效应进行分析,采用伪一级反应动力学计算方法进行验证。通过Arrhenius公式计算反应速率常数与温度的关系,如式(7)所示。

    k=AeEaRT (7)

    式中:k反应速率常数;R为摩尔气体常数,取8.314 kJ∙(mol·K)−1A为指前因子;T为活化温度,K;Ea为表观活化能,kJ·mol−1

    对式(7)取对数可得到式(8)。

    lnk=EaR1T+lnA (8)

    根据式(8)的形式,以lnk为纵坐标,1T为横坐标,可以得到一条斜率为EaR,截距为lnA的直线,据此计算活化能Ea

    微波诱导与电热活化条件下分别选取了20、30、40、60、80 ℃这5个温度梯度,测量不同温度条件反应过程中萘的浓度,根据实验结果计算出各时刻的ln(c0/ct),不同条件下的动力学计算如图10所示。

    图 10  不同活化条件下的动力学计算
    Figure 10.  Kinetic calculation under different activation conditions

    图10可以看出,ln(c0/ct)与时间t的关系可用一次函数表示,且相关性高,可以认为在选取的温度范围内,其反应过程基本符合伪一级动力学模型。不同温度条件下的反应动力学常数如表3表4所示。通过计算得出,微波诱导条件下,活化能Ea=14.85 kJ·mol−1;常规电加热条件下,活化能Ea=17.63 kJ·mol−1

    表 3  微波诱导条件下不同温度的反应动力学计算
    Table 3.  Calculation of reaction kinetics at different temperatures under microwave radiation
    温度/k拟合方程式相关系数R2反应速率常数
    293y=0.01540x−0.108680.989 20.015 40
    303y=0.02106x−0.117310.992 10.021 06
    313y=0.02895x−0.093130.997 00.028 95
    333y=0.04074x−0.025650.996 00.040 74
    353y=0.05232x−0.159310.997 30.052 32
     | Show Table
    DownLoad: CSV
    表 4  常规加热条件下不同温度的反应动力学计算
    Table 4.  Calculation of reaction kinetics at different temperatures under conventional heating conditions
    温度/k拟合方程式相关系数R2反应速率常数
    293y=0.01427x−0.089390.963 90.014 27
    303y=0.01806x−0.084020.993 10.018 06
    313y=0.02077x−0.093130.998 60.020 77
    333y=0.03403x−0.025650.995 30.034 03
    353y=0.03961x−0.159310.997 40.039 61
     | Show Table
    DownLoad: CSV

    由动力学分析结果可以看出,微波诱导条件下反应速率常数更大,说明微波诱导条件下,过硫酸盐可以更快速氧化降解土壤中的萘,微波辐射的强化作用促进了过硫酸盐的分解,并且可以增强过硫酸盐在土壤颗粒中的扩散[48],提高污染物去除效率。其次,微波辐射可以降低反应所需的活化能,分析其原因可能是通过改变土壤中有机质极性,使土壤中硫酸根自由基与萘分子碰撞频率加大和减弱化学键的结合强度等方式来实现的。

    1) 利用COMSOL Multiphysics多物理场仿真软件优化谐振腔内电磁及温度场分布,腔体两侧磁控管不对称分布时电磁场分布最均匀,根据仿真结论优化后的微波反应器具有更好的加热均匀性。

    2) 通过单因素实验分析各条件对反应体系的影响,相对较高的PS浓度、MW处理时间、MW辐射温度和土壤含水率可提高萘的降解率,反应在PS浓度1.0 mol·L−1、MW温度80 ℃、土壤含水率15%、MW处理60 min的条件下,萘的去除率最高可达到96.5%。

    3) 对MW/PS体系的表观动力学进行研究,MW/PS体系可以快速有效降解土壤中的萘,MW/PS体系反应速率常数是常规电加热的1.6倍,反应速率常数随温度增加而增大,微波可以降低反应所需的活化能。

  • [1] 胡洪营, 孙艳, 席劲瑛等. 城市黑臭水体治理与水质长效改善保持技术分析[J]. 环境保护, 2015, 43(13): 24-26.

    Google Scholar Pub Med

    [2] 北京市水务局. 2020 [R]. 北京市水资源公报, 2021.

    Google Scholar Pub Med

    [3] 徐晶, 朱民. 城市景观水体富营养化及其控制[J]. 环境科学与管理, 2010, 35(7): 150-152.

    Google Scholar Pub Med

    [4] RANDALL C W. Innovative Economical and Technological Strategies for the Implementation of Limit of Technology (LOT) Nutrient Removal in the Chesapeake Bay Watershed [M]. 2004.

    Google Scholar Pub Med

    [5] MANKINS J C. Technology Readiness Level, A White Paper [R], 1995.

    Google Scholar Pub Med

    [6] 中华人民共和国国家质量监督检验检疫总局. 科学技术研究项目评价通则 [S]. 2009.

    Google Scholar Pub Med

    [7] 中国标准化研究院, 中国电子科技集团公司, 北京加值巨龙管理咨询有限公司. 科学技术研究项目评价通则 [S]. 中华人民共和国国家质量监督检验检疫总局; 中国国家标准化管理委员会. 2009: 12

    Google Scholar Pub Med

    [8] 关于印发《国防科工局基础科研管理办法》的通知 [J]. 国家国防科技工业局文告, 2011(1): 24-9.

    Google Scholar Pub Med

    [9] 国务院印发国家技术转移体系建设方案 [J]. 中国安全生产科学技术, 2017, 13(10): 24.

    Google Scholar Pub Med

    [10] 王心, 魏东洋, 胡小贞. 水污染防治成套技术系统成熟度评估方法研究: 以湖滨带生态修复技术评估为例[J]. 环境工程, 2017, 35(8): 15-19.

    Google Scholar Pub Med

    [11] 齐美灵, 郭勇, 李经纬, 等. 基于专利分析的气浮选技术成熟度研究[J]. 石油和化工设备, 2014, 17(12): 33-35.

    Google Scholar Pub Med

    [12] 傅晓阳. 城市污水处理智能控制技术应用前景研究 [D]. 北京: 北京工业大学, 2010.

    Google Scholar Pub Med

    [13] 王心. 洱海流域入湖河流清水产流机制修复技术集成 [D]. 西安: 西安科技大学, 2017.

    Google Scholar Pub Med

    [14] LONDON M A, HOLZER T H, EVELEIGH T J, et al. Incidence matrix approach for calculating readiness levels[J]. Journal of Systems Science and Systems Engineering, 2014, 23: 377-403. doi: 10.1007/s11518-014-5255-8

    CrossRef Google Scholar Pub Med

    [15] 王心, 姜琦, 魏东洋, 等. 水专项技术的分类及其就绪度评价[J]. 科技管理研究, 2017, 37(1): 69-74.

    Google Scholar Pub Med

    [16] CHANG L, LI M, CHENG B, et al. Integration-centric approach to system readiness assessment based on evidential reasoning[J]. Journal of Systems Engineering and Electronics, 2012, 23(6): 881-890. doi: 10.1109/JSEE.2012.00108

    CrossRef Google Scholar Pub Med

    [17] 郭道劝. 基于TRL的技术成熟度模型及评估研究[J]. 国防科技, 2017, 38(3): 34-44.

    Google Scholar Pub Med

    [18] SAUSER B, RAMIREZ-MARQUEZ J E, MAGNAYE R, et al. A systems approach to expanding the technology readiness level within defense acquisition [J]. International Journal of Defense Acquisition Management, 2008, Vol. 1.

    Google Scholar Pub Med

    [19] 丁茹, 彭灏, 欧渊. 武器装备系统成熟度评估方法及应用[J]. 装备指挥技术学院学报, 2011, 22(3): 20-24.

    Google Scholar Pub Med

    [20] 巩兵. 系统成熟度评估方法及其应用研究[J]. 航空科学技术, 2015(8): 57-61.

    Google Scholar Pub Med

    [21] 董亮, 茹伟. 雷达系统技术成熟度评价方法研究[J]. 舰船电子工程, 2014, 34(3): 127-129.

    Google Scholar Pub Med

    [22] RAMIREZ-MARQUEZ J E, SAUSER B J. System development planning via system maturity optimization[J]. IEEE Trans Engineering Management, 2009, 56(3): 533-548. doi: 10.1109/TEM.2009.2013830

    CrossRef Google Scholar Pub Med

    [23] 刘靖东, 张化照, 高锁文等. 复杂产品系统成熟度评估方法与应用[J]. 科技管理研究, 2010, 30(12): 44-46.

    Google Scholar Pub Med

    [24] 张玲丽, 顾敦罡, 陆嘉麒, 等. MBBR用于某CAST工艺污水处理厂提标改造的效能及碳排放分析[J]. 环境工程技术学报, 2023, 13(2): 679-686.

    Google Scholar Pub Med

    [25] 中国城镇供水排水协会. 城镇排水统计年鉴 [R]. 中国城镇供水排水协会, 2018.

    Google Scholar Pub Med

    [26] 魏锋, 曹名帅. 改良型氧化沟+磁混凝沉淀工艺用于污水处理厂扩容提标[J]. 中国给水排水, 2019, 35(18): 55-57.

    Google Scholar Pub Med

    [27] HUANG X, XING Y, WANG H, et al. Nitrogen advanced treatment of urban sewage by denitrification deep-bed filter: removal performance and metabolic pathway[J]. Frontiers in Microbiology, 2022, 12: 4138.

    Google Scholar Pub Med

    [28] 段跟定, 张胜利, 吴国忠. 五段Bardenpho/反硝化深床滤池/臭氧氧化处理工业园废水[J]. 中国给水排水, 2020, 36(22): 116-120.

    Google Scholar Pub Med

    [29] 高阳, 周利, 李凌云, 等. 反硝化深床滤池深度处理市政污水及其微生物特性[J]. 中国给水排水, 2022, 38(19): 54-60.

    Google Scholar Pub Med

    [30] 王胤, 吴嘉利, 姚翔, 等. 五段Bardenpho/生物滤池在氧化沟提标改造中的应用[J]. 中国给水排水, 2022, 38(10): 74-78.

    Google Scholar Pub Med

    [31] 蒋康豫, 唐静, 蒋宁. 一种城镇污水SDA+BAF的处理系统及其处理工艺, CN111499124A [P/OL]. [2021-04-06]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9GFE9IGF9HCC9IHG9ICD9GGD9GAGBBIA8BDA9HCABIHACGIA.

    Google Scholar Pub Med

    [32] 中国科学院生态环境研究中心、中持水务股份有限公司、北京中持碧泽环境技术有限责任公司. 绿色“一带一路”技术 | 活性自持深度脱氮技术运行 [EB/OL].[2022-10-15]. https://www.sohu.com/a/426956561_99899283, 2020.

    Google Scholar Pub Med

    [33] 郑垒, 郑旭文, 汪晓军, 等. 一体式臭氧催化氧化-曝气生物滤池深度处理印染废水[J]. 中国给水排水, 2019, 35(22): 105-107.

    Google Scholar Pub Med

    [34] 张博, 雷志斌. 人工快渗工艺处理小城镇污水工程[J]. 哈尔滨商业大学学报(自然科学版), 2013, 29(4): 409-411.

    Google Scholar Pub Med

    [35] 何强, 周健, 龚本洲, 等. 一种缺氧生物滤池反硝化同步除磷脱氮深度处理系统的构建方法, CN105417691A [P/OL]. [2017-11-10]. https://cprs.patentstar.com.cn/Search/Detail?ANE=5BCA9IFE9GFD4AAA9CHB9GGD9EIH9AIGACIABEHA9GCA2BBA

    Google Scholar Pub Med

    [36] 陈小军, 黄韬, 刘石虎, 等. 污水厂尾水反硝化滤池生物/化学协同脱氮除磷研究[J]. 中国给水排水, 2017, 33(23): 27-32.

    Google Scholar Pub Med

    [37] 左早荣. 云南某污水处理厂氧化沟工艺提标扩建[J]. 节能与环保, 2021(7): 62-63.

    Google Scholar Pub Med

    [38] 周健. 重庆主城水污染控制与水质改善技术研究与应用[EB/OL]. 重庆: 重庆大学[2016-06-29]. https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-4p_H5157itHVzbzj735XtTfF_z5peEpU-qurQdDmPu6Ahnv4Xi262oJyqAiaQOj077h-RaRMDCsuEA-pjRZTvH&uniplatform=NZKPT

    Google Scholar Pub Med

    [39] 冉阳, 付峥嵘, 唐宁远, 等. 改良生物滞留系统强化对雨水径流中氮磷的去除[J]. 环境科学与技术, 2021, 44(9): 49-57.

    Google Scholar Pub Med

    [40] 成水平. 滨湖新区低影响开发与水生态系统构建技术研究[EB/OL]. 上海: 同济大学[2017-06-29]. https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-4p_H5157itHVzbzj735XtTfF_z5peEpU-qurQdDmPu6KgY5RJ-NexLXGUZgjI-DUn_SR_PNZqiUlKYPEZ7WdJo&uniplatform=NZKPT

    Google Scholar Pub Med

    [41] 王秀朵, 郑兴灿, 赵乐军, 等. 天津中心城区景观水体功能恢复与水质改善的技术集成与示范[J]. 给水排水, 2013, 49(4): 13-16.

    Google Scholar Pub Med

    [42] 张大群, 王秀朵, 金宏, 等. 一种治理景观水体富营养化的工艺, CN101979343B[P/OL]. [2011-02-23]. https://cprs.patentstar.com.cn/Search/Detail?ANE=8DDA8EEA9DID6AGA4CBA8EEA8DDAEGGA9FDH9AEB9GEDDIHA

    Google Scholar Pub Med

    [43] 李梦祥. 梯级人工湿地系统构建及对微污染河水的净化效能研究 [D]. 保定: 河北大学, 2021.

    Google Scholar Pub Med

    [44] 季兵. 生态塘—湿地耦合系统处理上海崇明地表水研究 [D]. 上海: 东华大学, 2010.

    Google Scholar Pub Med

    [45] 张巍, 路冰, 刘峥, 等. 北方地区农村生活污水生态稳定塘处理示范工程设计[J]. 中国给水排水, 2018, 34(6): 49-52.

    Google Scholar Pub Med

    [46] 常利朋. 白洋淀水质污染特征及基于植物净化的水质提升技术研究[D]. 北京: 北京林业大学, 2019.

    Google Scholar Pub Med

    [47] 刘兴社. 太阳能混合充氧-生态浮岛集成修复景观水体效果研究[D]. 西安: 西安建筑科技大学, 2019.

    Google Scholar Pub Med

    [48] 徐国梁, 邓黛青, 刁一明等. 景观水体修复的太阳能生物浮岛技术研究[J]. 浙江水利水电专科学校学报, 2013, 25(1): 38-43.

    Google Scholar Pub Med

    [49] 水生态修复技术之五: 组合式生态浮岛生态修复技术 [J]. 浙江水利科技, 2016, 44(6): 93-94.

    Google Scholar Pub Med

    [50] 熊家晴, 杜晨, 郑于聪, 等. 表流-水平流复合人工湿地对高污染河水的净化[J]. 环境工程学报, 2015, 9(11): 5167-72.

    Google Scholar Pub Med

    [51] 申世峰, 郭兴芳, 孙永利, 等. 悬浮填料技术用于污水处理厂二级出水极限脱氮研究[J]. 给水排水, 2021, 57(2): 51-55.

    Google Scholar Pub Med

    [52] 陈晶, 邓文, 陈萍, 等. 反硝化细菌强化潜流湿地的污水处理厂尾水脱氮试验[J]. 安全与环境学报, 2017, 17(1): 262-266.

    Google Scholar Pub Med

    [53] 朋四海, 黄俊杰, 李田. 过滤型生物滞留池径流污染控制效果研究[J]. 给水排水, 2014, 50(6): 38-42.

    Google Scholar Pub Med

    [54] 龙凤, 毕粉粉, 董战峰等. 城镇污水处理全成本核算和分担机制研究——基于中国333个城镇污水处理厂样本估算[J]. 环境污染与防治, 2021, 43(10): 1333-1339.

    Google Scholar Pub Med

    [55] 任福民, 梁锐, 蒋勇, 等. 不同地区污水处理厂进出水浓度及削减量对能耗的影响[J]. 北京交通大学学报, 2014, 38(1): 29-32.

    Google Scholar Pub Med

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0501234Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionDOWNLOAD: 14.5 %DOWNLOAD: 14.5 %FULLTEXT: 71.1 %FULLTEXT: 71.1 %META: 14.5 %META: 14.5 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 99.7 %其他: 99.7 %XX: 0.1 %XX: 0.1 %南京: 0.1 %南京: 0.1 %其他XX南京Highcharts.com
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  /  Tables(4)

Article Metrics

Article views(3955) PDF downloads(117) Cited by(0)

Access History

Quantitative evaluation of Limit of Technology(LOT) application potential by Improved System Readiness Level Assessment——A case study on projects of “Major Science and Technology Program for Water Pollution Control” and related technology combinations

Abstract: Sewage treatment to meet the demand of recycled water quality is increasing, and the technology suitable for the situation in our country has yet to be optimized as it gradually explores limit of technology (LOT) of sewage nutrition removal. This paper constructs an improved system readiness level (SRL) evaluation method based on the existing technology readiness level (TRL) and algorithm matrix, and relies on the LOT alternative technology combinations related to the national "Water Pollution Control and Treatment Science and Technology Major projects" during the “11th Five-Year Plan”, “12th Five-Year Plan” and “13th Five-Year Plan” and other domestic and foreign alternative technology combinations that meet the requirements of LOT. By comprehensive quantitative evaluation of TRL and improved SRL, the current situation of the development of LOT technologies in our country is sorted out and 12 candidate technologies combinations are selected. Among the 12 selected LOT alternative technology combinations, the SRL value of “A2O+Deep-Bed Denite Filters Technology”, “A2O+MBBR+Coagulation Technology” and “A2O+Self-acctive Denitrification Technology+BAF” can reach 0.8~1, reaching the stage of production, operation and maintenance, which can be directly applied in production and generate high application benefits in the market. While the cost of TN and TP per unit mass removal of the three technology combinations is high, and the core functional processes are mainly traditional reactor technologies. Most of the single technology TRL levels are above 7, and most of the improved SRL values are between 0.6 and 0.8, which are in the stage of system development and verification. The relevant technology combinations are improving product stability for real market promotion. And most alternative technology combinations make the great use of the properties of ecological technologies such as plants and wetlands, which not only realizes strong synchronous nitrogen and phosphorus removal, but also has the market advantage of low operation and maintenance cost, which has the potential to be popularized.. The LOT alternative technology combinations basically realize the cost optimization and low carbon and low consumption technology operation mode, and meets the needs of waste water reclamation and the improvement of ecological environment.

  • 再生水正日益成为城市第二水源[1]。2020年北京市供水量为40.6×109 m3,其中再生水为12.0×109 m3,占总量的29.6%[2]。为实现城市水体富营养化防治目标,污水处理出水水质标准相应不断提升[3]。因此,学界与业界提出极限技术 (limit of technology, LOT) ,目标为实现出水总氮 (TN) <3 mg·L−1,总磷 (TP) <0.1 mg·L−1[4]。目前,国内虽有诸多满足LOT目标要求的处理工艺,但由于各类工艺处于不同研发或应用阶段,其技术完整性、稳定性和应用前景尚缺乏系统性的定量比较与评价。满足城市再生水利用要求的LOT技术及政策选择,仍需科学决策方法的支撑。

    技术成熟度 (technology readiness level, TRL) 评价法被用以衡量各项技术对目标工程项目的满足程度[5]。2009年,我国实施《科学技术研究项目评价通则》 (GB/T22900-2009) ,强化了量化管理科学研究和技术成熟度评价的重要性[6-7]。2010年,国防科工局在基础科研“十二五”重大项目立项论证过程中提出:凡是未通过技术成熟度评价或评价等级不达标的项目不得参与立项论证[8]。2017年,《国家技术转移体系建设方案的通知》 (国发〔2017〕44号) 指出“推广技术成熟度评价,促进技术成果规模化应用”[9]。因此,技术成熟度法逐渐在包括环境工程在内的各类科技领域得到应用,并支持了国家水体污染控制与治理科技重大专项 (以下简称“水专项”) 综合技术分析[10]、气浮技术分析[11]、污水处理智控技术分析[12]、洱海入湖河流修复技术分析[13]等相关课题的科学决策。

    为兼顾技术在我国研发的前沿性与应用推广前景,本研究从“十一五”、“十二五”和“十三五”水专项已验证项目中,筛选出水水质可基本满足LOT要求的代表性技术组合作为研究对象,进行综合评判的技术成熟度评价,并利用集成成熟度 (integration readiness level, IRL) 对单项技术定性评估结果进行集成系统定量化改良,构建IRL矩阵法改良的系统成熟度 (system readiness level, SRL) ,提升系统技术评价的综合性与全面性,为评估及优选符合减污降碳协同增效的政策背景的,可实现极限脱氮除磷要求的低碳低耗LOT技术提供参考。

    • 水处理技术TRL评价准则的建立,通常仿照航天领域TRL细化准则的内涵,按照从立项、研发到应用的顺序构建框架,参考技术原理研究程度、技术市场需求、应用项目数量及尺度级别等特征,最终依据技术发展过程中的原理发现、技术方案、可行性论证、小试至示范工程实验及推广应用等阶段划分,并确定TRL等级值[14]。因此,水处理技术9个TRL等级的评估细则表述如表1所示[15]。TRL等级评估主要是针对离散技术元素的定性赋值评价,即仅限于评估单个系统的关键技术要素 (critical technical elements,CTE) 或某特定系统,而无法致力于多个单项技术的连结与集成[14]。首先,当TRL应用于技术组合的综合定量判别时,难以对技术 (或分系统) 集成到实际运行系统的难度进行精准评判,故使对技术成熟化过程 (由低级TRL向高级TRL演进) 的不确定性做出指导的难度增大。其次,TRL不支持对可能由人为或技术因素引起不确定性的分析,造成其用于定位组合技术成熟水平时误差加剧[16]。同时,因在选择TRL级别时没有引入对比分析法,故当涉及多个技术评估时无法进行比较分析。鉴于TRL本身存在的局限,尽管传统TRL等级评估已广泛应用于单一技术检测且日趋成熟,但单独使用TRL在技术系统层面仍存在不确定和不成熟因素,其单独很难全面描述技术组合的综合成熟水平[17]

    • 目前,TRL等级评估在单项技术成熟度评估应用中较为成熟。但随着技术体系逐渐丰富,TRL无法体现技术组合中各个单项技术间相互作用对整体系统效果的影响。TRL的这一局限性催生了许多成熟度指标的后续开发,其中包含集成成熟度 (integration readiness level,IRL) 及系统成熟度 (system readiness level,SRL) 。为更加细致、全面及系统地评价技术组合的成熟度及推广特性[18],研究者们基于TRL的相关分析,从数学上将组件TRL值与集成IRL结合起来,创建出针对系统技术进展评估的专门度量方法,即SRL。SRL的精确分析建立在TRL充分、准确的分析结果上,由此可见,TRL体系的成熟与完善为SRL的开发与应用提供了理论可行性与技术基础性。目前,常用的SRL计算方法中加权法应用较多,但权重确定受人为主观影响较大,且难以考虑技术间的复合集成关系[19];模板对比法对系统真实成熟度反映较为客观,但计算过程较为复杂[20];因子法可表示所研究技术与成熟技术的差距,但难以表现技术目前成熟情况[21]。然而,IRL矩阵法兼顾考虑单项技术本身的TRL与不同单项技术间的集成程度,且计算过程简易、结果客观性高,已在航天、卫星和雷达等领域获得成熟应用[18]。因此,本研究选择IRL矩阵法进行改良SRL计算。

    • IRL体现了不同技术兼容交互接口的系统分析,也体现了集成点 (即TRL) 间一致比较性的系统分析。此外,IRL可描述两项技术之间的集成程度,其中一项为开发中技术,另一项为正在开发或成熟技术。因此,对于精确评价技术的集成准备程度,IRL具有广阔的发展前景[22]。水处理技术中IRL等级的定性赋值评判依据如表2所示[10]

    • 基于IRL等级的矩阵法改良SRL计算具体过程如下。首先评估单项技术的TRL,形成TRL组合向量 (式 (1) ) ,再构建IRL矩阵 (式 (2) ) ,由IRL表示任意2项技术的交互集成程度。水处理集成技术的处理效果往往取决于发展程度较低的技术,因此IRL矩阵元素取值时取对应位置TRL较低技术的数值。SRL矩阵计算式见式 (3) ,其中计算添加权重因子的SRL见式 (4) 。

      式中:ni为与技术i具有集成关系的技术数量;n为所有技术个数,最终算得添加权重因子的SRL为不大于1的正数[23]。基于IRL矩阵法计算的改良SRL取值,可与不同TRL取值所代表的技术成熟程度形成对应关系,相关具体定义如表3所示[23]

    • 通过调研“十一五”、“十二五”和“十三五”期间水专项相关课题及近年来再生水品质污水脱氮除磷的主流技术,综合考虑国内各地再生水标准取值、相关技术的应用程度及发展前景,在现有氮磷去除率高、出水基本满足LOT要求的技术组合中,筛选出12种工作原理、流程组合方式及应用规模不尽相同的LOT备选技术组合,作为主要研究与分析评估对象。表4汇总了各个备选技术组合的技术细节与基本特征。各备选技术组合至少包含2项以上单项技术,且单个组合内单项技术数量不超过4项,均有水专项针对性相关课题的研究内容进行示范支撑,保证了评估的合理性。由于TRL为针对离散技术元素的定性赋值评价,用于评估单个系统的关键技术要素 (CTE) 或某特定系统,展现单项技术的具体成熟度。SRL分析基于TRL的分析结果进行,以全面细致的对组合技术进行评判。因此,通过TRL对技术组合的单项技术成熟度进行定性评价,并基于此通过改良SRL方法来分析技术组合本身的系统集成状况以期对系统成熟度进行评价。进水水质根据示范工程所在点位示范运行期间的年平均值确定,出水水质、各单项技术的TRL取值及其运行成本根据调研课题研究报告及相关发表论文的数据波动范围综合确定,并基于此计算各项技术组合的TN、TP单位质量去除运行成本。整体而言,各个LOT单项技术的TRL值均在5以上,最高TRL值可达到9。

    2.   LOT备选技术组合改良SRL评估分析
    • 由于TRL评价方法的局限性,选用通过基于TRL等级分析以构建IRL矩阵评估的改良SRL评价方法来评估“十一五”、“十二五”和“十三五”期间水专项相关课题及近年来再生水品质污水脱氮除磷筛选出来的12项LOT备选技术,以TRL分析来定性评价技术组合中单项技术的技术成熟度等级及分布情况,并基于此构建SRL对12项技术组合的集成情况和系统成熟度进行定量评估,以为污水处理中的先进技术组合发展评估及优化提供新思路。

    • 根据LOT备选技术组合的不同技术阶段和主功能技术类型,对12种LOT备选技术组合的各个单项技术进行系统归纳分类梳理,结果如图1所示。整体而言,LOT备选技术组合的工艺流程可归纳为污水原水-污水厂二级处理-深度处理3个主控功能阶段。污水原水经污水处理厂二级处理系统净化后,出水辅以深度处理的主功能技术而达到LOT的标准要求。而主功能技术以生物类技术为主,表明满足LOT要求的技术组合仍需重点关注污水处理厂人工处理系统与自然处理系统功能的耦合、强化与优化。LOT备选技术组合中,污水厂二级处理阶段的人工处理系统主要使用A2O技术、Phoredox技术、氧化沟技术及BNR技术此4类传统生化强化技术,技术成熟度高且发展时间较长。深度处理阶段是LOT备选技术组合实现极限脱氮除磷关键功能的核心阶段,现有的主功能技术中除混凝沉淀技术为化学手段外,其余均属于生物手段。按照主要技术功能实施方式的不同,主功能技术可进一步归类为反应器类、人工湿地类和混合系统类3大类;而根据主要处理对象的区别,三大类工艺还可更细致地梳理为单独除磷、单独脱氮和同步脱氮除磷3类。反应器类技术和混合系统类技术的TRL值主要分布在7~9,这表明技术水平多数已达到第三方评估认可至推广应用阶段,面向快速应用的前景可观;人工湿地类技术的TRL值以6为主,主要还停留在进一步完善示范工程市场接受度的阶段,需要第三方的鉴定和验证以评估技术的可靠性及稳定性。

      对不同TRL等级单项技术在各LOT备选技术组合中的使用频次和同等级值出现频次进行细化梳理,以获得单项技术TRL值分布的详细信息,结果如图2所示。A2O技术在各技术组合中共出现了7次,是出现频次最高的技术,已被证明技术成熟度以及推广应用程度较高。出现频次第二多的单项技术为氧化沟技术、混凝沉淀技术和Phoredox技术,出现频次均为2次。以上均为污水厂二级处理技术,处于人工处理系统阶段。其余单项技术的出现频次均为1次,且涵盖了所有的LOT主功能技术,这说明LOT的主功能技术尚处于行业发展初期的多方技术竞争市场阶段。对不同TRL等级值的单项技术出现频次进行统计发现,TRL值为8的单项技术有1项,TRL值为6的单项技术共7项,TRL值为7的单项技术共3项,TRL值为9的单项技术共7项。其中,除4项为单独脱氮或除磷的单项技术外,其余单项技术均可实现整体脱氮除磷。整体而言,技术发展水平达到工程示范及以上的单项技术总数可达到22项 (TRL≥6) 。其中,TRL值在6~7的单项技术共10项,大多为新兴的生态/生物类工艺,以生物作用 (植物吸收和微生物利用) 和生态调控作用为脱氮除磷的主要机制;而TRL值≥8的单项技术共12项,已经过第三方评估或用户验证,主要为发展时间较长、应用较为广泛的人工水处理技术和部分生态强化的混合系统类技术。由此可见,这些备选LOT技术组合基本实现了成本优化和低碳低耗的技术运营模式,可满足污水的资源化及生态环境的优化需求。这也表明,以生物脱氮除磷为主的技术已在LOT技术组合中占据重要地位,这也符合减污降碳协同增效的政策背景,具有较高的市场推广及应用价值。

    • 对各个LOT备选技术组合内部不同单项技术成熟度等级值的数据分布进行统计分析,结果如图3所示。所有技术组合的单项技术TRL值均在6及6以上,其中技术组合1、2、3、4中的各单项技术TRL值均为9。具体来看,技术组合1、2、3、4、8在采用传统A2O或BNR处理技术的基础上,复合了MBBR、反硝化深床滤池、曝气生物滤池、混凝沉淀、传统人工湿地等整体成熟度较高的技术,TRL值为8~9,平均值与中位值接近或等于9,在天津等地有较成熟的的示范工程[41],技术规范也较为成熟,已有推广应用基础。技术组合1、3、5、9、10、11通过将悬浮填料、强化深床滤池等反应器强化脱氮技术或具有蓄积、调控功能的生态技术,运用在A2O技术或Phoredox技术的出水深度处理中,借助植物净化[46]、生态浮床[49]、复合强化人工湿地[50]等技术,可充分发挥植物和湿地的功能特点,以实现水体的强化脱氮除磷。这些技术系统平均TRL值接近8,整体较为成熟,在北京[51]、重庆[34]、天津[41]、河北[43, 46]等地都有相关示范工程和第三方效果评估,并具备初步的技术规范。技术组合6、7、12采用了轻质填料人工湿地、复合填料式生物滞留池、太阳能充氧生态浮岛等较为新颖的技术,故平均TRL值约为7,技术成熟度等级达到第三方评估应用认可的水平,在江苏[52]、安徽[36, 53]、西安[47]等地已建成相关课题的示范工程。

      对各项LOT备选技术组合中不同主功能类型单项技术的TRL等级数量占比进行分析,结果如图4所示。在污水处理厂出水阶段,采用的各单项技术TRL值均为9,占比达到100%。污水厂处理工艺主要采用传统的水处理工艺 (A2O、BNR、氧化沟、Phoredox) ,由于其工艺发展时间较长,技术发展成熟,因而基本实现了市场性应用和推广。污水处理厂二级出水后,反应器类主功能技术中单项技术总数共6个,其中66.7%的单项技术TRL值达到9。而TRL值为7的单项技术占16.7%,TRL值为6的单项技术占剩余16.7%。人工湿地类主功能技术的单项技术总数为4个,TRL值为6的单项技术占比最大达50%,TRL值为9的单项技术占比50%。混合系统类主功能技术中,TRL值为6的单项技术总数为4个,占比50%,TRL值为9和8的单项技术各1个,占比均为12.5%,而TRL值为7的单项技术为1个,占比25%。故整体而言反应器类主功能技术大多发展时间较长,单项技术成熟度较高;混合系统类和人工湿地类单项技术具有较多耦合创新,技术成熟度略低。

    • LOT备选技术组合经评估矩阵计算后的系统成熟度SRL分析结果如图5所示。各项备选技术组合的SRL值较高,大多技术组合的SRL值为0.6~0.8,处于系统发展验证阶段,相关技术组合正在为真正的市场推广进行产品稳定性提升。技术组合1、2、3、4、8的SRL值为0.8~1.0及0.9~1.0,达到了生产、操作和维护阶段,具备直接生产并面向市场产生较高的应用效益的能力,可在未来的推广应用中占据重要地位。

      技术经济性作为衡量推广应用可行性的重要指标,也纳入本研究的成熟度评价中。LOT备选技术组合中单项技术的处理运行成本依据《城市污水处理工程项目建设标准》 (建标[2001]77号) 核算,主要考量技术的动力费、药剂费、材料费、修理费、管理费、折旧费、人工工资等。经调研,我国污水平均处理运行成本为0.50~1.22元·m−3[54] (污水处理全运营成本减去污泥处理成本) 。根据全国平均进出水水质[55]及平均运行成本计算可知:全国平均TN单位质量去除运行成本为0.03元·g−1,TP单位质量去除运行成本为0.19元·g−1。通过整合各单项技术的运行成本及技术组合的进出水水质,计算得出LOT备选技术组合的TN单位质量去除运行成本和TP单位质量去除运行成本,具体结果如表1所示,而各技术组合系统运行成本的对比分析结果如图5所示。

      TN单位质量去除运行成本 (0.01~0.06元·g−1) 较TP单位质量去除运行成本 (0.09~0.65元·g−1) 低,且其技术组合的相应脱氮、除磷的单位质量去除运行成本大致趋势相同,除技术组合11外,由于其进水总磷浓度较低导致TP单位质量去除运行成本较高 (0.35元·g−1) 。12项技术组合的TN单位质量去除运行成本和全国平均TN单位质量去除运行成本基本持平,除技术组合1、2、3、4 (分别为0.06元·g−1、0.04元·g−1、0.03元·g−1、0.03元·g−1) 外TN单位质量去除成本均低于全国平均TN单位质量去除运行成本 (0.03元·g−1) 。由于LOT技术出水水质标准高于全国平均污水厂出水水质,说明LOT技术在单位质量去除TN上更具有市场优势,且更符合人们对再生水水质提高的日益需求。12项技术组合的TP单位质量去除运行成本和全国平均TP单位质量去除运行成本相比,除了技术1、2、3、10、11 (分别为0.61元·g−1、0.38元·g−1、0.65元·g−1、0.36元·g−1、0.35元·g−1) 外,各项技术组合的其单位质量去除运行成本相近或低于全国平均值 (0.19元·g−1) 。而LOT出水水质标准高于全国平均污水厂出水水质,说明LOT技术在单位质量去除TP上更具有市场优势,同样更符合人们对再生水水质提高的日益需求。进一步分析,技术组合1、2、3、4的TN、TP单位质量去除运行成本较高,主要受其技术组合中的污水厂二级处理技术和深度处理主功能技术大多为传统的反应器类技术,其系统运行和维护成本较高,但其改良SRL等级值较高,达到了操作和维护阶段,可直接生产并面向市场实现系统生命周期运行的最大效益。而技术组合5、6、7、8、9、10、11、12因各LOT备选技术组合的深度处理主功能技术类型主要通过生物法 (植物、生态系统耦合) 为核心关键工艺,其系统维护和运营成本较低且去除氮、磷能力较强使其TN、TP单位质量去除运行成本较低,但SRL系数等级大多分布在0.6~0.79,处于系统发展验证阶段。相关技术组合正在为真正的市场推广进行产品稳定性提升,有待进一步优化的潜力空间。以上技术组合将同步脱氮除磷的混合系统类技术或具有蓄积、调控功能的生态技术运用在二级出水深度处理工艺中,借助植物净化、生态浮床、复合强化人工湿地、曝气生物滞留池、太阳能混合充氧生态浮岛等一系列生态技术,充分利用植物和湿地等生态技术的特点,既实现了高效的同步脱氮除磷,又降低了工艺本身的运行和维护成本,并挖掘了污水资源化的景观价值,在其运行生命周期中进一步实现了低碳低耗运营模式的优化与发展。各项技术组合中相关生态类单项技术的TRL等级大多处于示范工程或第三方检验阶段,具备技术革新的潜力,更利于整体系统的优化和提升,市场前景可观。

    3.   结论
    • 1) 对水专项相关课题进行相关调研和实时跟进并对其和国内外基本满足LOT要求的技术进行梳理,筛选出12项LOT备选技术组合,均为污水厂二级处理技术辅以主功能深度处理技术进而达到LOT要求。主功能深度处理技术以生物类技术为主,可分为反应器类技术、人工湿地类技术和混合系统类技术三类,大部分单项技术TRL等级在7以上,具有较强的应用前景。整体而言,反应器类技术的单项技术成熟度较高,混合系统类和人工湿地类单项技术具有较多耦合创新,技术成熟度略低。

      2) LOT备选技术组合的改良SRL值为0.6~0.8,处于系统发展验证阶段,相关技术组合正在为真正的市场推广进行产品稳定性提升。大部分备选技术组合的TN、TP单位质量去除运行成本均低于我国污水处理厂的相应污染物平均单位质量去除运行成本,具有较大市场优势。技术组合1、2、3、4的TN、TP单位质量去除运行成本较高,但其改良SRL等级值较高,达到了操作和维护阶段,可直接生产并面向市场实现系统生命周期运行的最大效益。技术组合5、6、7、9、10、11、12的系统充分利用植物和湿地等生态技术的特点,运行成本相对较低,具有推广潜力。由此可见,这些备选LOT技术组合基本实现了成本优化和低碳低耗的技术运营模式,可满足污水的资源化及生态环境的优化需求。同时,LOT单项技术还应加强物理-化学脱氮除磷、生态处理技术的研发,推进植被搭配优化,使其在运行生命周期中进一步实现低碳低耗运营模式的不断优化和发展。

    Figure (5)  Table (4) Reference (55)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
  • 表 1  土壤样品的基本理化性质
    Table 1.  Basic physical and chemical properties of soil samples
    pH水分/%有机质质量分数/%阳离子交换量/ (cmol·kg−1) 粒径分布/%
    砂粒粉粒黏粒
    8.364.373.455.4319.3771.359.28
     | Show Table
    DownLoad: CSV
  • 表 2  萘降解的中间产物
    Table 2.  Intermediate products of naphthalene degradation
    序号化合物分子式分子量结构式
    11,2-DihydroxynaphthaleneC10H8O2160.17
    21,2-Benzenedicarboxylic acidC8H6O4166.13
    3Salicylic acidC7H6O4138.12
    4CatecholC6H6O2110.11
    5phenyl hydroxideC6H6O94.11
     | Show Table
    DownLoad: CSV
  • 表 3  微波诱导条件下不同温度的反应动力学计算
    Table 3.  Calculation of reaction kinetics at different temperatures under microwave radiation
    温度/k拟合方程式相关系数R2反应速率常数
    293y=0.01540x−0.108680.989 20.015 40
    303y=0.02106x−0.117310.992 10.021 06
    313y=0.02895x−0.093130.997 00.028 95
    333y=0.04074x−0.025650.996 00.040 74
    353y=0.05232x−0.159310.997 30.052 32
     | Show Table
    DownLoad: CSV
  • 表 4  常规加热条件下不同温度的反应动力学计算
    Table 4.  Calculation of reaction kinetics at different temperatures under conventional heating conditions
    温度/k拟合方程式相关系数R2反应速率常数
    293y=0.01427x−0.089390.963 90.014 27
    303y=0.01806x−0.084020.993 10.018 06
    313y=0.02077x−0.093130.998 60.020 77
    333y=0.03403x−0.025650.995 30.034 03
    353y=0.03961x−0.159310.997 40.039 61
     | Show Table
    DownLoad: CSV