Loading [MathJax]/jax/output/HTML-CSS/jax.js

PAN Yirong, LUO Yuli, LIU Junxin, WANG Xu. Environmental and economic impacts of implementing tighter effluent standards at municipal wastewater treatment plants in Yiwu City, China[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1188-1198. doi: 10.12030/j.cjee.202008238
Citation: PAN Yirong, LUO Yuli, LIU Junxin, WANG Xu. Environmental and economic impacts of implementing tighter effluent standards at municipal wastewater treatment plants in Yiwu City, China[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1188-1198. doi: 10.12030/j.cjee.202008238

Environmental and economic impacts of implementing tighter effluent standards at municipal wastewater treatment plants in Yiwu City, China

  • Corresponding author: WANG Xu, wangxu2021@hit.edu.cn
  • Received Date: 26/08/2020
    Available Online: 10/04/2021
  • Water utilities in Yiwu City, Zhejiang Province, China, has devoted substantial efforts to satisfy ever-tightening effluent discharge regulations and standards since 2014. Based on the operational data and life-cycle inventory data (including pollutant emission, energy and chemicals consumption) at 9 wastewater treatment plants (WWTPs) in Yiwu, this study simulates and analyzes the change in the overall environmental and economic impacts of implementing stricter standards in 2017 than a baseline in 2015. Results show that tightening discharge levels indeed help reduce waterborne pollutants. However, an excessive amount of chemicals are consumed for the enhanced treatment processes, especially owing to insufficient influent carbon sources in most existing WWTPs. In addition, these intensive practices are also found to cause detrimental effects in terms of climate warming, terrestrial acidification and ecotoxicity. Finally, this work puts forward prospects of future efforts for establishing cost-effective, green and low carbon wastewater treatment paradigm in Yiwu and even China, which can meet tightening effluent standards, reduce unintended negative effects, and increase economic revenue of wastewater treatment services.
  • 氟污染是一个全球性问题,特别是在发展中国家[1],其中钢铁冶金、铝电解、铅锌冶炼、铜冶炼、光伏产业、锂离子电池等冶金行业是氟污染的主要来源[2]。过量摄入氟化物将会对人体产生有害影响,阻碍儿童生长发育[3]。我国对地表水体及生活饮用水中的氟化物质量浓度有严格的限值,也不断强化关于氟化物排放的管控。目前,水体中氟化物的去除技术主要有沉淀絮凝法、膜处理法、离子交换法、吸附法[4-7],其中吸附法具有产生无害废物数量少、材料成本低、操作简便等优点,被认为是最有前途的除氟方法。

    生物炭具有较大的比表面积,表面含有丰富的含氧官能团,且相对廉价,可作为新型吸附材料用于环境修复领域[8-9]。近年来,已有关于不同生物质来源(改性)生物炭除氟应用的研究报道。汤家喜等[10]利用花生壳、玉米秸秆制备的生物炭,最大吸附容量为1.18 mg·g−1;邱会华等[11]制备的氢氧化钾活化的荷叶基生物炭,最大吸附容量为0.85 mg·g−1;张涛等[12]制备了铁改性猪粪生物炭,最大吸附容量为4.4 mg·g−1;徐凌云等[13]制备了铝负载酒糟生物炭,最大吸附容量为18.05 mg·g−1;FENG等[14]利用城市污水处理厂污泥合成的改性污泥生物炭最大吸附容量高达30.49 mg·g−1。显然,不同原料衍生的生物炭吸附除氟能力不尽相同,其中由于污泥含有更高含量的亲氟矿物,其衍生的污泥生物炭对氟的吸附能力最强。但是,未经改性的污泥生物炭直接除氟效果并不理想,一般需要通过铝、铁等金属的负载以提高其吸附性能。近年来发现镧[15]、铈[16]、钇[17]等稀土金属有更好的亲氟性,可用于氟化物的去除,但是单独使用成本较高,如与铁或铝复合使用,有望发挥协同作用并降低成本。另外,我国污泥产量巨大,据统计2021年我国含水率80%的城市污泥产量已超过6 000×104 t[18]。当前污泥的主流处置方式包括干化焚烧、污泥堆肥和卫生填埋,都可能产生二次污染,对环境造成巨大的风险[19-20]。因此,研发基于污泥生物炭的复合改性除氟材料,拓展污泥资源化利用途径,实现以废治废,具有较好的开发前景。

    本研究以南通市政污泥为原料,通过缺氧热解-醋酸钾活化-铝铈改性工艺,制备了铝铈改性污泥生物炭(Al/Ce-CSBC),运用SEM、EDS、BET、XRD及XPS等技术对材料吸附前后的表面形态和结构特征进行了表征和分析,探究了Al/Ce-CSBC对模拟废水中氟离子的吸附行为和吸附机理,以期为污泥生物炭在除氟的资源化利用研究提供参考。

    干化污泥来自南通市某污水处理厂,在90 ℃鼓风干燥箱中干燥12 h后,粉碎过50目筛备用。所用试剂包括六水合氯化铝(AlCl3·6H2O)、七水合氯化铈(CeCl3·7H2O)、氟化钠(NaF)、醋酸钾(CH3COOK)、氢氧化钠(NaOH)等均为分析纯。准确称取2.21 g干燥的氟化钠粉末溶解在1 000 mL去离子水中,配置成氟离子质量浓度为1 g·L−1的储备液,移取适量储备液用去离子水稀释,配成一定初始氟离子质量浓度的含氟模拟废水。

    污泥的热解制备生物炭。称取5.00 g经干燥的污泥粉末置于坩埚中,用锡纸包裹,放入马弗炉中以10 ℃·min−1的速度升至650 ℃,并保持温度1 h。将热解后的污泥与醋酸钾按质量比1:2的比例混合,再次放入马弗炉中以10 ℃·min−1的速度升至650 ℃热解1 h,离心洗涤3次,并在80~90 ℃下干燥8 h。第1次热解污泥生物炭产物产量为3.21 g,记为SBC;与醋酸钾混合的第2次热解产物产量为4.29 g,记为CSBC。

    生物炭的金属改性。将事先称取的1.00 g CSBC加入体积总量为50 mL的氯化铝(0.10 mol·L−1)、氯化铈(0.05 mol·L−1)或两者的等体积混合溶液中,磁力搅拌2 h,用1.00 mol·L−1氢氧化钠溶液调节溶液pH至7.5,搅拌12 h。离心洗涤3次,最后在80~90 ℃下干燥8 h得到改性污泥生物炭材料。对铝、铈以及铝铈联合改性的污泥生物炭分别命名为Al-CSBC、Ce-CSBC以及Al/Ce-CSBC,其中Al/Ce-CSBC的产量为1.29 g。

    利用扫描电子显微镜(SEM)(Gemini SEM 300,德国)分析样品的表面形态;利用能谱仪(EDS)分析样品表面的元素;采用比表面积及孔径分析仪(ASAP2460,美国)分析样品的比表面积和孔容孔径;采用X射线粉末衍射仪(XRD)(Ultima IV,日本)分析样品的物相组成及结构;采用X射线光电子能谱仪(XPS)(K-Alpha+,美国)用于确定生物炭表面的成分和价态。

    准确称取0.04 g吸附剂(Al/Ce-CSBC)置于离心管中,加入40 mL 氟离子质量浓度为10 mg·L−1的模拟废水,立刻移至恒温振荡箱中以140 r·min−1的速度振荡20 h,过0.45 μm滤膜后,用氟离子选择电极(PXSJ-216F)测量滤液中氟离子的质量浓度,每次实验重复3次。pH影响实验只改变pH(3.0~10.0),其余参数不变。吸附等温线实验改变氟离子初始质量浓度(5~100 mg·L−1),采用Langmuir模型和Freundlich模型对实验数据进行拟合。

    吸附动力学实验在盛有2 000 mL氟离子初始质量浓度10 mg·L−1溶液的烧杯中进行,调节并保持溶液pH为6.0,将2.00 g吸附剂加入其中后开始磁力搅拌,至规定时间抽取20 mL混合液过滤,测量滤液中氟离子的质量浓度。采用Lagergren伪一阶、伪二阶模型以及Weber-Morris模型对实验数据进行拟合。

    图1为SBC、CSBC、Al/Ce-CSBC及吸附后的复合负载改性材料(F-Al/Ce-CSBC)的SEM图像。SBC表面呈现片状和层状结构,经醋酸钾活化后的CSBC表面呈现堆砌的颗粒状结构,经改性后的Al/Ce-CSBC表面呈块状且附着颗粒状结构,吸附后的F-Al/Ce-CSBC与Al/Ce-CSBC表面形态区别不大。图2为SBC和Al/Ce-CSBC的EDS图谱,SBC的表面元素主要为O、C、Ca及Fe,Al/Ce-CSBC的表面元素主要为C、O、Si和Ce。由表1可见,相对于SBC,Al/Ce-CSBC表面C和Ce的含量有所增加,O和Ca的含量有所降低。前者表明Ce的成功负载以及通过醋酸钾活化引入了大量的碳;后者与金属矿物组分的溶解损失有关,其中Ca的损失最严重,其含量从SBC的16.4%降至改性后的0.2%,几乎完全消失。

    图 1  SBC、CSBC、Al/Ce-CSBC及F-Al/Ce-CSBC的SEM图像
    Figure 1.  SEM images of SBC, CSBC, Al/Ce-CSBC and F-Al/Ce-CSBC
    图 2  SBC及Al/Ce-CSBC的EDS图谱
    Figure 2.  EDS images of SBC and Al/Ce-CSBC
    表 1  样品元素含量变化
    Table 1.  Changes in the element content of the samples %
    样品OCCaFeAlSiPMgKCe
    SBC39.928.016.44.03.73.41.11.00.80
    Al/Ce-CSBC35.146.80.21.81.710.900.20.62.3
     | Show Table
    DownLoad: CSV

    图3(a)、图3(c)和图3(e)的N2吸附/脱附等温线可以看出,3种样品等温线都属于IV类,且具H3型回滞环特征,表明样品内部存在丰富狭缝形介孔。图3((b)、图3(d)和图3(f))的孔径分布结果表明,经醋酸钾活化和复合负载改性后的CSBC及Al/Ce-CSBC材料孔径分布更呈多样化,但尖锐峰向更小孔径方向移动,其平均孔径应减小,这在表2中得到验证。由表2可见,SBC经活化和改性后,平均孔径变小,但孔容和比表面积有所增大。比表面积由原来的25.59 m2·g−1增至活化后的69.78 m2·g−1及改性后的176.36 m2·g−1,平均孔径则相应由13.4 nm降至11.4 nm和6.6 nm。活化和改性均能显著增加比表面积,可能是由于醋酸钾在活化过程中分解产生大量的CO2,以及改性溶液中酸溶解样品中大量的CaCO3,使得生物炭片层开裂,暴露出更多更小孔径的介孔。

    图 3  吸附材料的N2吸附/脱附等温线与孔径分布
    Figure 3.  N2 adsorption and desorption isotherms and pore distribution of adsorbents
    表 2  样品的孔隙结构
    Table 2.  Pore structure of the studied samples
    样品BET比表面积/(m2·g−1)总孔体积/(cm3·g−1)平均孔径/nm
    SBC25.590.114 413.454
    CSBC69.780.144 011.395
    Al/Ce-CSBC176.360.174 86.610
     | Show Table
    DownLoad: CSV

    图4(a)为SBC、CSBC、Al/Ce-CSBC和F-Al/Ce-CSBC的XRD图谱。其中SBC中含有明显的SiO2和CaCO3的衍射峰,CSBC中SiO2和CaCO3的峰强明显下降,表明该矿物组分的部分消溶,可能是醋酸钾活化促进了SiO2和CaCO3在高温的消溶/蚀刻反应,进而形成较小的孔隙和较大的比表面积。改性后的Al/Ce-CSBC中CaCO3的衍射峰则完全消失,可能是改性过程引入的金属盐水解产生强酸,使得残留的CaCO3被进一步完全溶解,形成更小的孔隙和更大的比表面积,这与前述关于Ca元素及孔隙的变化相一致。相对于SBC,CSBC和Al/Ce-CSBC中的SiO2的峰强均有不同程度的降低,表明活化和改性对SiO2也有一定的消溶作用。由Al/Ce-CSBC的XRD图谱可知,改性污泥生物炭有SiO2及少量的Al2SiO5晶体,前者是污泥自有残留,后者应为溶出的硅与改性引入的铝反应的产物,此外并没有出现铝和铈的其他晶体结构,表明改性金属主要以无定形负载于污泥生物炭的表面。除了二氧化硅晶体峰强度有略微降低,吸附氟后材料(F-Al/Ce-CSBC)的XRD图谱与吸附前基本一致,表明材料中的晶体结构稳定,推测其不参与对氟的吸附过程,无定形双金属羟基/氧化物应是主要吸附活性组分。由XPS图谱(图4(b))可知,SBC在346.89 eV处有较强的Ca2p信号,在CSBC相对减少,在Al/Ce-CSBC及F-Al/Ce-CSBC则完全消失,趋势与XRD一致,再次验证了碳酸钙的逐步溶解至完全消失的过程。Al/Ce-CSBC的XPS图谱中74.97 eV和885.72 eV处的峰分别对应Al2p和Ce3d,表明铝和铈的成功负载,这与EDS和XRD的结果一致。

    图 4  SBC、CSBC、Al/Ce-CSBC及F-Al/Ce-CSBC的XRD和XPS图谱
    Figure 4.  XRD and XPS patterns of SBC, CSBC, Al/Ce-CSBC and F-Al/Ce-CSBC

    图5较直观地显示了上述活化和改性过程的物性变化,即活化过程促进污泥生物炭中二氧化硅和碳酸钙晶体部分消溶,同时醋酸钾发生气化反应,产生造孔作用[21],使得CSBC的比表面积增大(表2);改性过程铝铈被成功负载,碳酸钙完全消失,形成更多的细小孔径,造孔作用更明显,比表面积增加更显著,而少量二氧化硅溶解后与铝(Ⅲ)形成硅酸铝晶体。

    图 5  污泥生物炭活化改性示意图
    Figure 5.  Schematic diagram of activation and modification process of sludge biochar

    不同合成阶段和金属改性的材料对F的吸附容量如图6所示,原始污泥生物炭SBC的吸附容量为5.42 mg·g−1,经醋酸钾活化后得CSBC的吸附容量则下降至2.90 mg·g−1,可能是SBC经活化后,部分有利于除氟的矿物(主要是含Ca矿物)溶解流失所致。CSBC再经金属改性后的吸附容量均有提升,但不同金属/金属组合改性提升程度不同,单一的Ce和Al改性使材料吸附容量分别提升了44%和157%,而Al-Ce联合改性则提升了228%,高于2种单一金属改性材料提升量之和,这表明铝铈双金属改性发挥了协同作用。

    图 6  不同吸附材料对F-的吸附容量
    Figure 6.  Adsorption capacity of different adsorption materials

    pH对Al/Ce-CSBC材料的吸附影响如图7所示,在氟离子初始质量浓度为10 mg·L−1,在酸性范围内,吸附容量随着pH的增加逐渐升高,在pH=6.0时达到最高值9.43 mg·g−1,随后随着pH的增加而逐渐降低,pH升至9.0以上,则急剧下降,其除氟率也有类似规律。Al/Ce-CSBC在溶液pH=4.0~9.0内均有75%以上的除氟率,这是由于生物炭的分散作用,将更多的活性位点充分暴露,使得其有更宽的pH适用范围[22]。同时考察了该体系吸附前后的pH变化,其结果见图8(a)。当pH<6.0时,吸附平衡后的pH有所升高,反之则有所降低,表明Al/Ce-CSBC吸附材料具有一定的pH缓冲作用,FENG等[14]研究其他氧化铝材料也有类似结果,认为该缓冲作用由铝盐的两性性质引起,具体表现为固态金属氧化物表面水解羟基化和质子化作用,详见后文机理分析部分。图8(b)为不同pH下Al/Ce-CSBC的Zeta电位变化。由图可见,该材料的零电位点(pHPZC)高达9.5,表明吸附剂在一定的碱性范围仍带正电荷,可能是因为Al/Ce-CSBC的比表面积较大,具有较好分散性,使得其表面正电荷得到较好维持和保护[22]。在pH<7.0时溶液中含有大量的H+,使得吸附剂表面发生质子化,体系Zeta电位为正值,能够与溶液中的F发生静电吸附,但过低的pH可能造成吸附剂表面负载的金属氧化物溶解,并有HF的生成,使吸附剂的吸附容量下降。在pH>7.0时,溶液中的OH会与F竞争吸附位点,使吸附容量有所下降。在pH=10.0时,吸附容量和除氟率下降更明显,其原因除了前述的竞争吸附,还由于吸附剂表面此时逆转为荷负电,对溶液中的F产生强烈的静电排斥作用。

    图 7  pH对Al/Ce-CSBC材料吸附性能的影响
    Figure 7.  Effect of pH on adsorption performance of Al/Ce-CSBC
    图 8  吸附前后pH的变化及pH对Al/Ce-CSBC 吸附剂Zeta电位的影响
    Figure 8.  Change in pH before and after adsorption and the effect of pH on the zeta potential of Al/Ce-CSBC

    在氟离子初始质量浓度为10 mg·L−1时,Al/Ce-CSBC的吸附容量随吸附时间的变化情况如图9所示。在前期吸附速率较快,10 min内吸附容量达到了8.30 mg·g−1;随后缓慢增加,在5 h时接近平衡状态。

    图 9  吸附动力学拟合
    Figure 9.  Adsorption kinetics fitting

    对吸附动力学数据的拟合结果表明,伪二级模型(R2=0.94)比伪一级模型(R2=0.49)更适合描述Al/Ce-CSBC对氟离子的吸附,表明氟化物在Al/Ce-CSBC上的吸附以化学吸附为主。颗粒内扩散模型如图9(b)所示。吸附反应可分为2个阶段,第1阶段,F通过界面膜扩散从液相水体转移到Al/Ce-CSBC的表面,并与表面大量的吸附位点结合产生快速吸附,这一阶段膜扩散是控制吸附速率的限制步骤;第2阶段,由于大量的F占据了吸附剂表面的吸附位点,部分F将渗透到吸附剂内部的孔径中,因此又被称为孔扩散阶段,第2阶段速率有所降低,该图没有通过原点表明颗粒内扩散不是唯一限速步骤[23]

    在常温且pH=6.0的条件下,Al/Ce-CSBC的吸附容量随氟离子初始质量浓度变化情况如图10所示。2种模型均能较好描述吸附过程,但Freundlich模型(R2=0.97)较Langmuir模型(R2=0.92)拟合程度更好,表明氟化物在Al/Ce-CSBC上的吸附以多层吸附为主,且Al/Ce-CSBC表面上的活性位点不均匀,1/n =0.29 (0<1/n<1)也表明吸附等温线类型是理想类型[24]。Langmuir模型中最大吸附容量41.47 mg·g−1,其与实际最大吸附容量45.66 mg·g−1相近。

    图 10  吸附等温线拟合
    Figure 10.  Adsorption isotherm fitting

    图11(a)为Al/Ce-CSBC材料的XPS全谱图,通过吸附前后的比较发现,吸附后的F-Al/Ce-CSBC在684.15 eV处新增了F1s的峰,表明氟离子被成功吸附在Al/Ce-CSBC吸附剂表面。为了研究其吸附机理,进一步分析了Al/Ce-CSBC吸附氟前后的XPS精细光谱(图11(b)~(d))。由图11(b)的O1s图谱中可见,吸附前531.28 eV和532.54 eV处的特征峰分别对应M―O和―OH,吸附后分别移至530.01 eV和531.39 eV,其中羟基氧占总氧的相对比率由吸附前的55.24%降至41.52%,金属氧化物中M―O的含量由吸附前的44.76%升至58.48%,表明―OH参与了与氟离子的交换。这与其他研究[25-26]结果一致。由图11(c)的Al2p图谱可见,74.46和75.17 eV处峰分别对应Al―O和Al―OH,均归属于负载于材料表面的无定形铝氧化物结构,吸附后峰位置分别移至73.10 eV和73.69 eV。这表明铝羟基/氧化物参与了氟离子的吸附[27-28]。吸附前后Ce元素XPS结果如图11(d)所示。Al/Ce-CSBC的Ce3d5/2的4个代表性峰位于882.78、886.30、888.64及899.35 eV,Ce3d3/2的3个代表性峰位于902.32、905.56及917.10 eV,以上7个峰吸附后分别移至881.34、884.50、886.98、898.37、901.83、904.88及915.65 eV,可清楚地观察到向低能方向位移。经计算Ce4+丰度由吸附前的36.51%下降到22.28%,说明F―Ce络合物的形成及电子转移[16, 29]

    图 11  吸附前后Al/Ce-CSBC的XPS分析
    Figure 11.  XPS spectra of Al/Ce-CSBC before and after adsorption

    基于上述对氟化物吸附过程pH的变化、等温线模型、动力学模型以及XPS表征分析结果,认为Al/Ce-CSBC对氟化物的吸附为物理吸附和化学吸附,其中化学吸附包括离子交换和表面络合占主导作用。改性过程中形成大量带正电荷的金属羟基/氧化物,且以无定形形式非均匀分散于污泥生物炭的表面,产生大量有效吸附位点并处于相对受保护的高分散体系中,使其表现出较高的零电荷点[22]和酸碱缓冲特性[14]。在碱性条件下产生大量的表面羟基和O2,并带负电荷(式(1)~式(2));酸性条件下则质子化并带正电荷(式(3))。

    M++OH→≡MOH (1)
    MOH+OH→≡MO2+H2O (2)
    MOH+H+→≡MOH+2 (3)

    在酸性条件下吸附剂表面的Zeta电位较高,对溶液中氟离子产生较强静电吸引,进一步引起式(4)反应,产物以金属氟化络合物形式结合在吸附剂表面,表现很高的吸附量和吸附能力,但是酸性过低时,氟主要以氟化氢形式存在,兼吸附剂表面金属的溶出,使得吸附容量下降;随着溶液pH的增加,吸附剂表面的Zeta电位降低,静电吸引减弱,超过零电点后吸附剂表面荷负电产生静电排斥,此时吸附以离子交换为主(式(5))。

    MOH+2+F→≡MF+H2O (4)
    MOH+F→≡MF+OH (5)

    通过与其他文献报道的吸附剂除氟性能的比较(表3),本研究使用的Al/Ce-CSBC有明显的相对优势。Al/Ce-CSBC最大吸附容量为41.47 mg·g−1,高于其他材料的吸附量,包括传统活性氧化铝(16.30 mg·g−1)、双金属和三金属复合材料(27~32 mg·g−1)、其他改性生物炭材料(18~28 mg·g−1)以及铝铁改性污泥生物炭材料(30 mg·g−1)。就酸碱适用性而言,Al/Ce-CSBC在较广的范围(pH=4.0~9.0)内均有75%以上的去除率,其他材料(除了三元金属复合材料)则类似传统的活性氧化铝,只能在较窄的酸性范围才有较高的除氟率。因此,铝铈改性污泥生物炭在较广的酸碱范围有较好的强化除氟作用,并可实现污泥的低碳固定和以废治废,在实际废水处理中有潜在应用价值。

    表 3  不同吸附剂的氟离子吸附性能对比
    Table 3.  Comparison of fluorine ion adsorption performance of different adsorbents
    吸附剂最适pHqm/(mg·g−1)文献
    活性氧化铝5.0~7.016.30[30]
    氢氧化铝基吸附剂7.725.80[31]
    Fe-La复合材料3.8~7.127.42[32]
    Y-Zr-Al复合材料7.031.00[17]
    Mg-Al-La三金属氧化物4.0~10.031.72[15]
    Tea-Al-Fe茶渣4.0~8.018.52[33]
    La改性柚子皮生物炭6.519.86[34]
    ALCS-Fe-Al磁性复合材料3.0~6.030.49[14]
    Al/Ce-CSBC4.0~9.041.47本文
     | Show Table
    DownLoad: CSV

    1)以市政污泥为原料,通过热解-活化-双金属改性成功制备了铝铈负载污泥生物炭Al/Ce-CSBC,活化和改性均可通过造孔和促消溶作用增加材料比表面积和分散性,使负载的无定形金属羟基/氧化物保持吸附活性,材料具较高的等电点和酸碱缓冲性;

    2) Al/Ce-CSBC对氟的最大吸附容量达到41.74 mg·g−1,在pH=4.0~9.0内均有较高的除氟率。其吸附动力学符合伪二级模型,吸附等温线符合Freundlich模型,为多层不均质吸附和化学吸附,其吸附机制包括静电吸附、表面络合和离子交换。

    3) Al/Ce-CSBC可发挥铝铈双金属协同吸附作用,且在较广的酸碱范围有较好的强化除氟作用。该吸附材料制备简单、廉价,有望实现以废治废和污泥的低碳固定,有潜在的应用价值。

  • [1] 刘俊新, 王旭. 城市污水处理的多目标管理[J]. 给水排水, 2015, 51(9): 1-3. doi: 10.3969/j.issn.1002-8471.2015.09.001

    CrossRef Google Scholar Pub Med

    [2] MENG F L, FU G T, BUTLER D. Cost-effective river water quality management using integrated real-time control technology[J]. Environmental Science & Technology, 2017, 51(17): 9876-9886.

    Google Scholar Pub Med

    [3] WANG X H, WANG X, HUPPES G, et al. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: Case study of a cool area of China[J]. Journal of Cleaner Production, 2015, 94: 278-283. doi: 10.1016/j.jclepro.2015.02.007

    CrossRef Google Scholar Pub Med

    [4] PAN Y R, WANG X, REN Z J, et al. Characterization of implementation limits and identification of optimization strategies for sustainable water resource recovery through life cycle impact analysis[J]. Environment International, 2019, 133: 105266. doi: 10.1016/j.envint.2019.105266

    CrossRef Google Scholar Pub Med

    [5] XU C, CHEN W, HONG J. Life-cycle environmental and economic assessment of sewage sludge treatment in China[J]. Journal of Cleaner Production, 2014, 67: 79-87. doi: 10.1016/j.jclepro.2013.12.002

    CrossRef Google Scholar Pub Med

    [6] MURRAY A, HORVATH A, NELSON K L. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: A case study from China[J]. Environmental Science & Technology, 2008, 42(9): 3163-3169.

    Google Scholar Pub Med

    [7] WERNET G, BAUER C, STEUBING B, et al. The ecoinvent database version 3 (part I): Overview and methodology[J]. The International Journal of Life Cycle Assessment, 2016, 21(9): 1218-1230. doi: 10.1007/s11367-016-1087-8

    CrossRef Google Scholar Pub Med

    [8] ARZATE S, PFISTER S, OBERSCHELP C, et al. Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant[J]. Science of the Total Environment, 2019, 694: 133572.

    Google Scholar Pub Med

    [9] HUIJBREGTS M A J, STEINMANN Z J N, ELSHOUT P M F, et al. ReCiPe 2016 v1.1: A harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: Characterization[R]. Bilthove: The Dutch National Institute for Public Health and the Environment, 2016.

    Google Scholar Pub Med

    [10] 文小兵. 探讨BOT建设的城市污水处理厂收费价格的形成[J]. 中国建设信息(水工业市场), 2009(5): 60-61.

    Google Scholar Pub Med

    [11] 陈中颖, 刘爱萍, 刘永, 等. 我国城镇综合污水的可生化性调查与分析[J]. 给水排水, 2009, 45(S1): 248-251.

    Google Scholar Pub Med

    [12] 周成金. 生物倍增工艺处理低碳氮比城市污水脱氮效能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Google Scholar Pub Med

    [13] Big Earth Data Program Chineses Academy of Sciences. Report on big earth data in support of the sustainable development goals[R]. Beijing: Big Earth Data Program Chineses Academy of Sciences, 2019.

    Google Scholar Pub Med

    [14] 刘智晓, 季民, 郝赟, 等. 利用活性污泥水解发酵补充碳源优化脱氮除磷[J]. 中国给水排水, 2013, 29(4): 12-16. doi: 10.3969/j.issn.1000-4602.2013.04.004

    CrossRef Google Scholar Pub Med

    [15] 杨敏, 郭兴芳, 孙永利, 等. 某高排放标准污水处理厂精细化运行措施研究[J]. 住宅产业, 2019(11): 138-142.

    Google Scholar Pub Med

    [16] MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074

    CrossRef Google Scholar Pub Med

    [17] WANG X, DAIGGER G, LEE D J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature[J]. Science Advances, 2018, 4: eaaq0210.

    Google Scholar Pub Med

    [18] WANG X, DAIGGER G, DE VRIES W, et al. Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes[J]. Nature Communications, 2019, 10(1): 2627. doi: 10.1038/s41467-019-10445-0

    CrossRef Google Scholar Pub Med

    [19] TURCONI R, BOLDRIN A, ASTRUP T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations[J]. Renewable & Sustainable Energy Reviews, 2013, 28: 555-565.

    Google Scholar Pub Med

    [20] 郑兴灿, 尚巍, 孙永利, 等. 城镇污水处理厂一级A稳定达标的工艺流程分析与建议[J]. 给水排水, 2009, 35(5): 24-28. doi: 10.3969/j.issn.1002-8471.2009.05.006

    CrossRef Google Scholar Pub Med

    [21] CHAKRABORTY T, GABRIEL M, AMIRI A S, et al. Carbon and phosphorus removal from primary municipal wastewater using recovered aluminum[J]. Environmental Science & Technology, 2017, 51(21): 12302-12309.

    Google Scholar Pub Med

    [22] THOMPSON K A, SHIMABUKU K K, KEARNS J P, et al. Environmental comparison of biochar and activated carbon for tertiary wastewater treatment[J]. Environmental Science & Technology, 2016, 50(20): 11253-11262.

    Google Scholar Pub Med

    [23] WWAP/UN-WATER. The United Nations World Water Development Report 2018: Nature-based solutions for water[R]. Paris: UNESCO, 2018.

    Google Scholar Pub Med

    [24] 李小艳, 丁爱中, 郑蕾, 等. 1990—2015年人工湿地在我国污水治理中的应用分析[J]. 环境工程, 2018, 36(4): 11-17.

    Google Scholar Pub Med

    [25] 张焓雨. 城镇污水处理成本控制研究[D]. 北京: 北方工业大学, 2019.

    Google Scholar Pub Med

    [26] WANG X, LIU J, REN N Q, et al. Assessment of multiple sustainability demands for wastewater treatment alternatives: A refined evaluation scheme and case study[J]. Environmental Science & Technology, 2012, 46(10): 5542-5549.

    Google Scholar Pub Med

    [27] WANG X, MCCARTY P L, LIU J, et al. Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(5): 1630-1635. doi: 10.1073/pnas.1410715112

    CrossRef Google Scholar Pub Med

    [28] BRADFORD-HARTKE Z, LANE J, LANT P, et al. Environmental benefits and burdens of phosphorus recovery from municipal wastewater[J]. Environmental Science & Technology, 2015, 49(14): 8611-8622.

    Google Scholar Pub Med

    [29] 国家发展和改革委员会价格司. 全国农产品成本收益资料汇编2017[M]. 北京: 中国统计出版社, 2017.

    Google Scholar Pub Med

    [30] 王旭, 刘玉, 罗雨莉, 等. 基于高附加值产品的废水资源化技术发展趋势与应用展望[J]. 环境工程学报, 2020, 14(8): 2011-2019. doi: 10.12030/j.cjee.202005128

    CrossRef Google Scholar Pub Med

  • 加载中
  • Cited by

    1. 黄瑞卿,格旦,李伟,熊健,吕学斌,杨崛园,谢鹏程. 载铝青稞秸秆生物炭对水中氟的吸附性能研究. 应用化工. 2025(01): 110-115 .
    2. 宋振,罗艳丽,王美娟,何佳乐,张千,解新哲. 锆铝等双金属改性生物炭同步去除水中As(V)和F. 中国环境科学. 2025(03): 1308-1320 .
    3. 马潇莹,程文雨,王东田. 聚硅酸铝絮凝剂除氟除浊效能研究. 苏州科技大学学报(工程技术版). 2024(03): 49-55+80 .
    4. 高卫民,王少鹏,王恩鹏,曹伟,张哲. 污泥基生物炭的制备与应用研究进展. 化工矿物与加工. 2024(11): 67-76 .
    5. 周成赟,唐小峰,渠晓琳,向天一,刘炜,程敏,熊炜平,宋彪. Ce-BDC衍生碳的除氟性能与机理. 环境工程学报. 2023(10): 3190-3199 .
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  /  Tables(5)

Article Metrics

Article views(7256) PDF downloads(113) Cited by(6)

Access History

Environmental and economic impacts of implementing tighter effluent standards at municipal wastewater treatment plants in Yiwu City, China

Abstract: Water utilities in Yiwu City, Zhejiang Province, China, has devoted substantial efforts to satisfy ever-tightening effluent discharge regulations and standards since 2014. Based on the operational data and life-cycle inventory data (including pollutant emission, energy and chemicals consumption) at 9 wastewater treatment plants (WWTPs) in Yiwu, this study simulates and analyzes the change in the overall environmental and economic impacts of implementing stricter standards in 2017 than a baseline in 2015. Results show that tightening discharge levels indeed help reduce waterborne pollutants. However, an excessive amount of chemicals are consumed for the enhanced treatment processes, especially owing to insufficient influent carbon sources in most existing WWTPs. In addition, these intensive practices are also found to cause detrimental effects in terms of climate warming, terrestrial acidification and ecotoxicity. Finally, this work puts forward prospects of future efforts for establishing cost-effective, green and low carbon wastewater treatment paradigm in Yiwu and even China, which can meet tightening effluent standards, reduce unintended negative effects, and increase economic revenue of wastewater treatment services.

  • 健康的水系统是维持城市可持续发展的重要基础。我国目前面临的水资源短缺、水环境恶化和水生态破坏等突出问题,已经成为限制我国经济发展和生态文明建设的关键性因素。城镇污水处理厂作为水体污染外源输入的有效屏障,对城市水环境治理和保护至关重要。近20年来,我国城镇污水排放标准经历了从综合标准到行业标准、从国家标准到地方标准的发展历程,呈现出污染物控制指标数量递增、排放限值日趋严格的趋势。2015年,国务院发布了《水污染防治行动计划》(简称“水十条”),要求“敏感区域(重点湖泊、重点水库、近岸海域汇水区域)城镇污水处理设施应于2017年底前全面达到一级A排放标准;建成区水体水质达不到地表水Ⅳ类标准的城市,新建城镇污水处理设施要执行一级A标准”。实际上,在我国经济发达地区,不少地方目前执行的排放标准已严于国家一级A标准。然而,随着污水排放标准的一味提高,污水处理工艺流程相应延长,污水处理会产生污染转移,主要体现在能耗和处理药剂的增加,以及由此产生的一系列负面环境影响[1]。另一方面,污水处理厂在技术选择、工艺设计和过程调控时,通常仅以污染物达标排放为目标,并未充分考虑受纳水体的环境容量,以致污水处理厂在应对水体水质变化时其响应与调控能力普遍有限[2]

    为响应国家生态文明建设号召,落实浙江省省委省政府有关“五水共治”的战略部署,义乌市自2014年起全面推进城镇污水治理工作,在城镇污水提标处理方面开展了诸多实践探索。自2015年起,义乌市各污水厂统一执行“义乌标准”。其中,氨氮(NH+4-N)和总磷(TP)月均排放浓度要求分别低于1.0和0.4 mg·L−1,相比国家一级A标准,NH+4-N和TP排放标准分别提高了80%和20%。2017年起,各污水处理厂执行更为严格的“金华标准”。其中,TP排放标准提高至0.35 mg·L−1。到2020年底,所有污水处理厂需实现有机物、总氮、氨氮和总磷的进一步减排,以满足排放限值再度升级的“浙江省标准”。迄今,义乌市在城镇污水厂建设和升级改造方面已投资超过30亿元,污水处理厂年运行费用高达数亿元。这在拉动环保产业发展的同时也带来了污水处理厂运营成本迅速提高的压力。

    本研究以义乌市2015年和2017年施行的排放标准为情境要素,结合污水处理厂实际运行数据及能耗、化学药剂和污染物排放的生命周期环境影响清单数据,运用虚实结合的情境模拟方法,综合评估义乌市污水处理厂污水提标处理的环境和经济效益,分析探讨负面效应的关键驱动因素及应对策略,以期为义乌市乃至我国构建经济高效、绿色低碳的污水治理模式提供参考。

1.   研究方法
  • 截至2019年,义乌市共建成城镇污水处理厂9座,各厂的设计规模和主要处理工艺见表1。其中,生物处理工艺以氧化沟和A/A/O为主,处理流程升级后新建的工艺则主要有高效沉淀池、纤维转盘滤池和反硝化滤池。各厂尾水就近排入义乌江、大陈江等水体。污泥在厂内脱水处理后运至环保公司进行处理处置。处置方式主要有填埋、焚烧、菌种培养和建材制作。为分析比较不同污水排放标准下义乌市污水处理的环境影响和经济成本,选用2015年(执行“义乌标准”)和2017年(执行“金华标准”)作为分析年。“义乌标准”要求的污水处理厂尾水中主要污染物浓度限值为:COD 50 mg·L−1、TN 15 mg·L−1NH+4-N 1 mg·L−1、TP 0.4 mg·L−1;“金华标准”在此基础上要求尾水中TP不得超过0.35 mg·L−1

  • 生命周期影响评价(life cycle assessment,LCA)是一种可用于量化产品或服务在其完整生命周期内对环境系统产生影响的评估方法,已被广泛应用于污水处理厂的环境影响研究,通常分为目标与范围定义、清单分析、影响评价和结果解释4个步骤。

    1) 目标与范围界定。对选定的9座污水处理厂进行环境影响研究,范围覆盖污水处理过程及剩余污泥的处理处置。相比运营期,污水处理厂建设期和拆除期的环境影响较小,通常可忽略不计[3]。因此,本研究仅针对污水处理厂运行期的环境影响开展评估分析,并选取各污水处理厂处理每吨污水作为模拟分析的功能单位。

    2) 清单分析。9座污水处理厂的水污染物排放总量及污泥产生量见表2,电力和处理药剂消耗量见表3。其中,电力消耗涵盖整个厂区,处理药剂包括用于强化除磷的聚合氯化铝(PAC)以及用于污泥脱水的阳离子聚丙烯酰胺(PAM),具体数据均来源于各厂的月度生产运行记录。除尾水排放外,污水处理厂产生的直接环境排放还包括污水处理过程中因污染物降解产生的温室气体排放,以及污泥处理处置过程中产生的气态污染物、重金属及氮磷营养元素的环境排放。排放量基于笔者前期构建的模型方法[4]估算得到,具体清单项目见表4。对于污泥处置的不同方案,清单估算的假设条件有所差异:1)污泥焚烧过程的能耗及生成的气态污染物基于污泥量进行估算[5];2)污水处理厂剩余污泥可替代制备水泥等建材的部分原料,替代率按10%计,制备过程的电耗按19 kWh·t−1污泥估算[6];3)利用剩余污泥培养接种物,因能耗和物耗较小,不计在内。电力生产和药剂制备过程产生的环境排放,以及水泥烧制过程排放气态污染物的清单数据,均来自Ecoinvent数据库(v 3.4)[7],主要清单分析结果见表5

    3) 影响评价。本研究采用基于ReCiPe 2016的中间影响评估方法(v 1.1)进行污水处理厂生命周期环境影响建模。ReCiPe 2016由荷兰公共卫生与环境研究院、荷兰莱顿大学等多所科研机构和知名高校联合开发,是目前涵盖环境影响类型较全面的生命周期评价方法之一,其已被广泛应用于污水处理的环境影响评估[8]。污水处理生命周期过程形成的淡水富营养化、淡水生态毒性、气候变暖、土壤酸化和土壤生态毒性是本研究的重点,相关潜能水平按式(1)进行估算并以典型污染物排放当量表示。

    式中:Pc即某一环境影响类型c的效应水平,Mi,j即污染物质i排放进入特定环境介质j的质量;CFc,i,j为特征化因子,表示单位质量污染物质i排放进入特定环境介质j在环境影响类型c所造成的效应水平与典型污染物相当的时候典型污染物的排放质量。具体地,淡水富营养化效应以磷元素当量(P-eq)表征,淡水和土壤生态毒性以1,4DCB(二氯苯)当量(1,4DCB-eq)表征,气候变暖和土壤酸化分别以CO2当量(CO2-eq)和SO2当量(SO2-eq)表征。相关特征化因子参见已有研究[9],相关建模及运算过程基于LCA平台SimaPro(v 8.4)开展。

    4)结果解释。基于环境影响类别的估算结果,分析义乌市城镇污水处理厂污水提标处理对水体环境和宏观生态系统的影响。

  • 经济成本分析主要涉及污水处理厂运营过程相关的动力消耗、药剂消耗、污泥处置、人员薪资、设备维护及其他等6个方面的支出费用。其中,电力、药剂和污泥处置的费用支出情况来自对污水处理厂的调研数据;人员薪资则按义乌市非私营单位就业人员年平均工资统计公报公开数据估算得到;污水处理厂设备维护费用基于污水处理厂建设投资进行估算,其中固定资产形成率、大修费率、维护费率分别按85%、1.7%和0.5%取值,办公管理、园区清洁等其他费用按前5项运营成本小计的10%估算[10]

2.   结果与讨论
  • 比较义乌市9座污水处理厂2015年和2017年各主要污染物的年度处理量、削减量和排放总量(见图1)可发现:相比2015年,2017年各厂主要污染物的年度处理量均有所增长,涨幅17%~51%不等,这表明该市近年来开展的排水系统建设工作对于提升全市的污水收集率有一定的意义;在经历污水处理提标改造后,有机污染物(以COD计)、TN、NH+4-N和TP的全市削减量相比2015年时分别增加了19%、62%、52%和25%;除TN的排放总量略有增加外,提标处理后尾水COD、NH+4-N和TP的全市年度排放总量分别减少了212、54和3 t。因此,污水处理厂提标改造总体上有益于水体污染物减排目标的实现。

    TP是淡水水体富营养化的主控元素,也是2017年义乌市污水处理厂提标处理的首要目标。对该市污水处理厂生命周期过程的淡水水体富营养化潜能进行了模拟,结果如图2所示。整体而言,污水处理厂尾水排放仍然是其富营养化潜能的主要产生过程,2015年和2017年的贡献比例分别达到69%和61%;2017年污水处理厂尾水排放贡献的淡水富营养化潜能约为37 t P-eq,较2015年污水处理未提标时有所降低。因此,提标改造有利于控制尾水排放直接产生的富营养化潜能。然而,在污水处理厂进行提标改造之后,污水处理生命周期过程中产生的富营养化潜能则较2015年增加了5 t P-eq。实际上,电力生产(尤其是火力发电)和水处理药剂制备的过程也会产生和排放含磷废液[7],从而影响水体富营养化程度。基于污水厂实际运行数据(表3),进一步对比提标前后义乌市污水处理厂全年电耗和药耗总量发现,污水提标处理过程中电耗和药耗均有增加;其中电耗由52 333 MW·h增至56 064 MW·h,PAC和醋酸则分别由7 780 t和1 839 t增至13 193 t和4 180 t。相应地,电耗和药耗对总体富营养化潜能的贡献比例由29%上升至38%,这是2017年该市污水处理生命周期过程富营养化潜能总体增加的主要原因。综上所述,提标前后,义乌市每排放1 t尾水产生的全生命周期淡水水体富营养化潜能,从0.34 g P-eq增至0.37 g P-eq(见图2)。从工业生命周期链条来看,现有污水二级处理技术普遍仰赖外部动力驱动或需辅以化学药剂进行过程强化,由此表明,污水被过度处理或未能真正有效地解决水体的富营养化问题。

    对义乌市每座污水处理厂生命周期过程的淡水水体富营养化潜能进行单独分析(见图2(b))发现:2号和4号污水处理厂每排放1 t尾水产生的生命周期富营养化潜能分别从提标前的0.37和0.31 g P-eq增至提标后的0.46和0.45 g P-eq,增幅明显,达23%和47%;提标后,2号和4号污水处理厂因电耗和药耗而间接产生的富营养化潜能占全生命周期潜能的47%和62%。进一步分析可发现,使用除磷药剂PAC间接产生的富营养化影响占2号污水处理厂电耗和药耗影响总和的49%,而4号污水处理厂的同等影响主要来自作为补充碳源的醋酸(见图2(b)中的饼状图)。除排放标准以外,水处理药剂的消耗量还与污水处理厂进水条件密切相关,尤其是污水的可生化性和碳氮比。

    BOD/COD是评价污水可生化性的常用指标。对义乌市9座污水处理厂进水BOD/COD进行分析(见图3),得到义乌市污水处理厂进水BOD/COD的平均值为0.32,低于我国城镇污水处理厂进水BOD/COD的平均水平(约为0.4)[11]。其中,2号和4号污水处理厂的BOD/COD分别仅为0.33和0.30。另一方面,污水碳氮比低于5,通常被认为不利于生物脱氮除磷[12];义乌市污水处理厂进水碳氮比平均水平为2.27,2号和4号污水处理厂进水碳氮比分别为1.90和1.86(见图3),是9座污水处理厂中最低的2座。由此可见,对于2号和4号污水处理厂而言,自身碳源不足是既有工艺提升处理标准的核心难点,而依赖外加药剂则是其处理污水过程中产生环境负效应的主因。

    进水碳源不足是我国城镇污水处理厂普遍面临的关键问题,雨水和地下水渗入污水管道是造成污水处理厂进水有机负荷降低的主要原因之一[13]。义乌市应进一步推进城镇排水系统的建设和完善,通过雨污管道混接改造、管网漏损诊断及修复等措施科学提升污水收集效率,并实践厂网一体化运行管理模式,将污水处理厂进水水量与水质作为排水系统质量的评估指标,从而促进城镇污水系统整体优化提升。另一方面,义乌市应利用9座污水处理厂污水管网互联互通的基础优势,发展新型传感器及配套物联网技术,根据全域污水水量-水质的动态演化,实时将他域可生化性强、进水碳氮高的污水输配至区域性进水碳源不足的污水处理厂,从而优化进水条件和处理效能,充分发挥各污水处理厂的处理能力,以实现义乌市全域污水水量-水质统筹调控和污水处理提质增效的新模式。

    厂界内污水处理工艺的升级改造和优化运行也是应对进水碳源匮乏的重要手段。义乌市污水处理厂采用的生物处理工艺以氧化沟和A/A/O为主。对于氧化沟工艺,国内已有实例采用侧流污泥水解技术进行碳源的优化转化,以满足污水处理厂提标处理对碳源的需求[14]。对于A/A/O工艺,也有工程案例通过科学调控曝气量和设置消氧区、优化碳源投加方式及投加量等措施,提升内外碳源的利用效率[15]。随短程反硝化耦合厌氧氨氧化等低碳工艺技术的快速发展,也为解决污水处理厂进水碳源不足的问题提供了新的技术路径[16]

  • 长期以来,城镇污水处理厂的核心作用被认为是减少污水直排对受纳水体产生的水质污染,故提升污水处理厂的尾水排放标准成为污水处理厂运行管理的核心目标。然而,从污水处理的全生命周期过程来看,尾水排放并非污水处理厂与自然生态系统产生联系的唯一介质[17]。例如,污水有机物经生物降解和转化,会产生CO2和CH4等温室气体。笔者过往的研究发现:污水处理厂所需电力和药剂的生产过程会产生污染物的多介质环境排放,如硫化物、重金属向大气和陆地生态系统排放;伴随着生物地球化学过程,这些污染物的无组织排放将可能对自然生态系统产生系列负面影响,加剧区域性甚至全球性的气候变暖、土壤酸化和多介质生态毒性风险等环境问题,不利于环境质量的综合提升和生态系统健康[18]。因此,本文对义乌市9座污水处理厂处理每吨污水产生的气候变暖效应、土壤酸化潜力、淡水及土壤生态毒性进行了模拟分析(见图4)。

    在污水处理过程中,部分污染物经微生物作用会转化为二氧化碳、甲烷和氧化亚氮等温室气体,其无组织排放会对气候变暖产生影响;同时,在生命周期的视角下,污水处理厂上游的电力生产和水处理药剂制备等工业生产过程也会产生碳排放,从而可能间接导致污水处理对气候变化造成不利影响。经分析发现,2017年义乌市污水处理厂处理每吨污水排放1.2 kg CO2-eq,较2015年未提标处理时增幅接近20%。其中,污水处理所耗电力和化学药剂的生产过程是最主要的排放来源,水中污染物降解过程的碳排放次之,二者排放量分别达到0.59和0.46 kg CO2-eq(见图4(a))。除碳排放外,电力和药剂生产过程还会排放硫化物等酸性气体,这些酸性物质经大气沉降后在土壤中积累,从而使土壤酸化[19]。2015年义乌市污水处理厂生命周期过程处理每吨污水排放2.11 g SO2-eq,2017年提标处理后上升了20%,达到2.54 g SO2-eq。虽然电力生产过程排放的酸性气体是主要来源,但提标后酸性气体排放量主要来自PAC制备过程,相比2015年其增幅接近70%(见图4(b))。PAC等药剂生产设施的建设过程还会向环境排放铜、锌、镍等重金属物质,从而给生态系统带来毒性风险[7]。模拟结果表明,药剂生产过程的环境排放是义乌市污水处理厂形成淡水和土壤生态毒性潜能的重要来源;2017年污水提标处理后,义乌市污水处理厂处理每吨污水造成的淡水和土壤生态毒性风险分别增加了50%和44%(见图4(c)~(d))。造成以上结果的主要原因包括PAC在内的药耗增加。进一步对比提标前后9座污水处理厂PAC使用量可发现:提标后各厂的吨水PAC用量均有不同程度的增加(见表3),2015年9座污水处理厂的平均吨水PAC用量为0.05 kg,而2017年该用量为0.08 kg,为提标前的1.5倍;提标前后PAC投加摩尔比的平均水平由3.3上升至4.0,其中2号污水处理厂2017年的PAC投加比最高,达到6.4,该值远超一级A稳定达标的经验范围(2~3)[20]

    综上所述,以化学强化为策略的污水提标处理技术路径,将会对宏观生态系统产生不利影响,故探索少药剂、零药剂的绿色方案是核心突破口。近来有研究[21]表明,采用新型膜材料等先进分离技术从化学污泥中回收铝用作二次絮凝剂,减少絮凝剂消耗的同时可缓解化学污泥处理处置的压力。低环境影响的药剂开发和应用,也有利于减少水处理药剂使用对环境产生的不利影响[22]。另一方面,将人工湿地、组合生态塘、生态浮岛等生态处理技术作为污水处理厂的深度净化单元,充分利用生态系统的净化功能,有望减少污水处理过程对外部资源和能源的过度依赖,为少药剂、零药剂的绿色处理方案提供了可能[23-24]

  • 对比义乌市9座污水处理厂2015年和2017年的吨水运行成本及组成可发现(见图5(a)),提标处理后吨水运行成本由0.91元上升至1.08元,增幅达到19%;其中电力、药剂费用和人员薪资是运行成本的主要组成部分,提标后药剂费用占比明显增加,由15%上升至22%。2018年,我国东部地区污水处理厂的吨水运行成本约为1.03元[25],义乌市污水处理厂的吨水处理成本基本与其持平;但从成本组成来看,义乌市污水处理厂药剂消耗的费用比例明显高于统计值(3%~15%)[25]。从运行总成本来看,义乌市9座污水处理厂总运行成本在提标后由1.49×108元上升至1.77×108元,增量近0.3×108元(见图5(b))。进一步分析各厂情况可发现,除了3号污水处理厂因处理水量减少而总成本有所下降以外,其余各厂运行总成本在提标后均有不同程度的增加,且可归因于吨水处理成本的提高而非处理水量的增加。然而,经济投入增加与污水处理厂污染物减排之间并无直接关系。例如,在全市的9座污水处理厂中,4号和2号厂投入了大量的资金进行污水提标处理(见图5(b)),但其对全市污水处理厂TP削减量的贡献并不显著(见图5(c)),加上电力和药剂的大量使用,4号和2号污水处理厂的间接富营养化程度也处于较高水平(见图5(d))。

    污水和污泥蕴含丰富的资源和能源,对其加以增值转化与高效利用[26-27],有望补偿污水处理厂日常运营的支出成本。例如,将污水处理厂尾水就近回用于城市景观与果园灌溉,一方面可缓解义乌市水资源短缺问题,另一方面尾水中氮磷可为植物作物提供生长元素,减少传统化肥使用[28]。据统计资料显示,2018年义乌市农业灌溉需水量约为4×107 t,假设该水量均由污水处理厂尾水提供,则根据各厂尾水水质水量和已有研究提供的折算因子[4],可初步估算义乌市污水处理厂尾水中氮的化肥当量为375 t(以硝酸铵计)、磷的化肥当量为9 t(以重过磷酸钙计)。按《全国农产品成本收益资料汇编》[29]中浙江地区化肥单价计算(氮肥3 900元·t−1、磷肥4 800元·t−1),回收污水处理厂尾水中氮磷所得经济价值约计9.8×106元,相当于提标后污水处理成本增量的35%。除此之外,基于一系列先进的污水资源化新技术,还可将污水中的可用物质转化合成为单细胞蛋白、聚羟基烷酸、细菌纤维素、鸟粪石和蓝铁矿等高附加值产品[30],进一步扩大污水资源化的经济效益。

3.   结论
  • 1)提标处理有益于水体污染物减排,但既有污水二级处理技术普遍仰赖外部动力驱动或需辅以化学药剂进行过程强化,这使得污水过度处理或未真正有效地解决水体的富营养化问题。自身碳源不足是部分污水处理厂既有工艺提升处理标准的核心难点,而依赖外加药剂是其处理污水过程中产生环境溢出效应的主要原因。

    2)在全生命周期视角下,污水处理厂所需药剂的生产过程会产生污染物的多介质环境排放。这些污染物质的无组织排放将伴随生物地球化学过程对宏观生态系统产生不利影响。具体而言,以化学强化为策略的污水提标处理技术路径会加剧污水处理对气候变暖、土壤酸化、淡水和土壤生态毒性的影响。

    3)依赖外加药剂的污水提标处理方案显著增加了污水处理厂的运行成本,其中药剂费用占比高于东部地区其他污水处理厂的平均水平;经济投入增加与污水处理厂污染物减排之间并无直接关系,亟需重构技术可行、绿色经济的污水提标处理方案。

Figure (5)  Table (5) Reference (30)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
  • 表 1  样品元素含量变化
    Table 1.  Changes in the element content of the samples %
    样品OCCaFeAlSiPMgKCe
    SBC39.928.016.44.03.73.41.11.00.80
    Al/Ce-CSBC35.146.80.21.81.710.900.20.62.3
     | Show Table
    DownLoad: CSV
  • 表 2  样品的孔隙结构
    Table 2.  Pore structure of the studied samples
    样品BET比表面积/(m2·g−1)总孔体积/(cm3·g−1)平均孔径/nm
    SBC25.590.114 413.454
    CSBC69.780.144 011.395
    Al/Ce-CSBC176.360.174 86.610
     | Show Table
    DownLoad: CSV
  • 表 3  不同吸附剂的氟离子吸附性能对比
    Table 3.  Comparison of fluorine ion adsorption performance of different adsorbents
    吸附剂最适pHqm/(mg·g−1)文献
    活性氧化铝5.0~7.016.30[30]
    氢氧化铝基吸附剂7.725.80[31]
    Fe-La复合材料3.8~7.127.42[32]
    Y-Zr-Al复合材料7.031.00[17]
    Mg-Al-La三金属氧化物4.0~10.031.72[15]
    Tea-Al-Fe茶渣4.0~8.018.52[33]
    La改性柚子皮生物炭6.519.86[34]
    ALCS-Fe-Al磁性复合材料3.0~6.030.49[14]
    Al/Ce-CSBC4.0~9.041.47本文
     | Show Table
    DownLoad: CSV