-
臭氧是一种高效氧化剂,可选择性攻击废水中不饱和有机物。因此,在难降解废水处理及废水深度处理中得到了广泛应用[1-2]。但单独臭氧氧化工艺存在氧化能力有限、气-液传质速率慢、水中溶解度较低、具有选择性等缺陷,成为制约臭氧化技术应用的关键问题。
多相催化臭氧化工艺可通过将臭氧转化为强氧化性自由基或通过催化剂对污染物的吸附来提高污染物去除率[3-5],从而克服单独臭氧氧化工艺氧化能力有限的问题。催化材料中的活性炭材料具有高比表面积(500~1 500 m2·g−1)、耐腐蚀性、吸附容量大、廉价等优点,是一种应用广泛的催化剂[6],可有效促进臭氧分解生成羟基自由基(·OH),从而提高难降解有机设计污染物的去除率[7-8]。
但目前催化臭氧还存在臭氧溶解度低和气液传质速率慢等局限性,产生小的臭氧气泡是一种解决上述问题可行的方法。微气泡是直径小于50 μm的微小气泡,在溶液中具有气-液接触面积大,气-液接触时间(即液相停留时间)长、气含率高、气-液传质速率高等优势。此外,微气泡表面存在电荷聚集效应,小于50 μm的微气泡在纯水中的Zeta(ζ)电位平均值约为−35 mV[9],在微气泡收缩过程中表面电荷密度和ζ电位急剧升高,并在破裂时产生·OH,具有类催化效应。而臭氧微气泡的类催化效应更为显著[10]。TAKAHASHI等[11]的研究表明,微气泡破裂可产生自由基。KHUNTIA等[12]采用对氯苯甲酸(pCBA)作为探针对臭氧微气泡系统中·OH浓度进行检测计算,结果发现,酸性条件下臭氧微气泡产生·OH的效率高于碱性条件下。
本研究采用微气泡催化臭氧化(以活性炭为催化剂)处理酸性大红3R,并与单独微气泡臭氧化和传统气泡臭氧化进行比较,考察了微气泡催化臭氧分解特性以及处理酸性大红3R脱色和TOC的去除效能,分析了微气泡催化臭氧化强化·OH氧化过程,探究了酸性大红3R臭氧化降解途径,以期为微气泡催化臭氧化技术在印染废水处理中的应用提供参考。
微气泡催化臭氧化酸性大红3R的性能及机理
Performance and mechanism of catalytic microbubble ozonation of acid red 3R
-
摘要: 以活性炭为催化剂,采用微气泡催化臭氧化处理酸性大红3R,考察其处理性能和机理,并与微气泡以及传统气泡臭氧化处理性能进行了比较。结果表明:微气泡催化臭氧化可加速液相臭氧分解,其分解系数为0.093 min−1;同时氧化能力明显增强,其脱色速率和TOC去除速率常数分别为0.342 min−1和0.024 2 min−1,均显著高于微气泡和传统气泡臭氧化。微气泡催化臭氧化处理中,臭氧微气泡收缩破裂和活性炭催化的协同效应可强化·OH氧化反应,其对TOC去除的贡献率可达到75%。·OH捕获剂的存在使得微气泡催化臭氧化TOC去除率下降,其中Na2CO3的抑制作用最为显著。微气泡催化臭氧化中,臭氧利用效率和反应效率亦得到强化,平均臭氧利用率为98.3%,累积TOC去除量和臭氧消耗量比值R可达0.128 mg·mg−1。GC-MS分析结果表明,微气泡催化臭氧化酸性大红3R降解途径包括偶氮键断裂、萘环/苯环开环、小分子有机酸矿化等过程。Abstract: The performance and mechanism of catalytic microbubble ozonation of acid red 3R with activated carbon as catalyst were investigated, and its performance was compared with microbubble or coarse bubble ozonation. The results showed that catalytic microbubble ozonation could promote the decomposition of dissolved ozone with higher decomposition coefficient of 0.093 min−1, and improve oxidative ability with higher decolorization rate constant of 0.342 min−1 and TOC removal rate constant of 0.024 2 min−1, than microbubble and coarse bubble ozonation. The synergistic effect of ozone microbubble breakage and activated carbon catalytic activity could enhance ·OH oxidation in catalytic microbubble ozonation, which contributed to about 75% TOC removal. Some ·OH scavengers could reduce TOC removal rate by catalytic microbubble ozonation, of which Na2CO3 presented the highest inhibition. In catalytic microbubble ozonation, the ozone utilization efficiency and reaction efficiency also increased, the average ozone utilization efficiency could reach 98.3%, and the cumulative ratio of TOC removal amount to ozone consumption amount could reach 0.128 mg·mg−1. GC-MS analyses indicated that the degradation pathway of acid red 3R in catalytic microbubble ozonation included the processes of azo bond cleavage, naphthalene/benzene ring breakage, and mineralization of low molecular organic acids.
-
Key words:
- microbubble /
- catalytic ozonation /
- acid red 3R /
- ·OH oxidation /
- degradation pathway
-
表 1 活性炭主要表面物理化学性质
Table 1. Main surface physical and chemical properties of activated carbon
主要元素/% 表面含氧官能团/(mmol·g−1) 比表面积/(m2·g−1) pHPZC C O Si Al Fe Sb Mg 羧基 羰基 酚羟基 总计 26.6 46.0 12.6 5.4 2.9 1.4 1.1 0.01 0.09 0.06 0.225 676 8.87 -
[1] WAND J L, BAI Z Y. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312: 79-98. doi: 10.1016/j.cej.2016.11.118 [2] CHEN H, WANG J. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites[J]. Chemosphere, 2019, 234: 14-24. doi: 10.1016/j.chemosphere.2019.06.014 [3] LIU J, LI J, HE S, et al. Heterogeneous catalytic ozonation of oxalic acid with an effective catalyst based on copper oxide modified g-C3N4[J]. Separation and Purification Technology, 2020, 234: 116120. doi: 10.1016/j.seppur.2019.116120 [4] HOU S, JIA S, JIA J, et al. Fe3O4 nanoparticles loading on cow dung based activated carbon as an efficient catalyst for catalytic microbubble ozonation of biologically pretreated coal gasification wastewater[J]. Journal of Environmental Management, 2020, 267: 110615. doi: 10.1016/j.jenvman.2020.110615 [5] BAKHT S S, DEHGHANZADEH R, AALANIH, et al. Activated carbon catalyzed ozonation (acCO) of reactive blue 194 azo dye in aqueous saline solution: Experimental parameters, kinetic and analysis of activated carbon properties[J]. Journal of Water Process Engineering, 2020, 35: 101188. doi: 10.1016/j.jwpe.2020.101188 [6] MOUSSAVI G, ALAHABADIL A, YAGHMAEIAN K. Investigating the potential of carbon activated with NH4Cl for catalyzing the degradation and mineralization of antibiotics in ozonation process[J]. Chemical Engineering Research and Design, 2015, 97: 91-99. doi: 10.1016/j.cherd.2015.03.011 [7] FENG J, XING B, CHEN H. Catalytic ozonation of humicacid in water with modified activated carbon: Enhancement and restoration of the activity of an activated carbon catalyst[J]. Journal of Environmental Management, 2019, 237: 114-118. [8] RIBERA J, SÁNCHEZ M. Ozonation of 1, 3, 6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase[J]. Applied Catalysis B: Environmental, 2002, 39(4): 319-329. doi: 10.1016/S0926-3373(02)00117-0 [9] TAKAHASHI M. ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface[J]. Journal of Physical Chemistry B, 2005, 109(46): 21858-21864. doi: 10.1021/jp0445270 [10] 刘春, 周洪政, 张静, 等. 微气泡臭氧催化氧化-生化耦合工艺深度处理煤化工废水[J]. 环境科学, 2017, 38(8): 3362-3368. [11] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Journal of Physical Chemistry B, 2007, 111(6): 1343-1347. doi: 10.1021/jp0669254 [12] KHUNTIA S, MAJUMDER S K, GHOSH P. Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles[J]. Chemical Engineering Research and Design, 2015, 98: 231-239. doi: 10.1016/j.cherd.2015.04.003 [13] 张静, 杜亚威, 茹星瑶, 等. pH对微气泡臭氧氧化处理染料废水影响[J]. 环境工程学报, 2016, 10(2): 742-748. doi: 10.12030/j.cjee.20160236 [14] SÁNCHEZ-POLO M, RIBERA-UTYILLA J, VONGUNTEN U. Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions[J]. Water Research, 2006, 40(18): 3375-3384. doi: 10.1016/j.watres.2006.07.020 [15] LI L, YE W, ZHANG Q, et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J]. Journal of Hazardous Materials, 2009, 170(1): 411-416. doi: 10.1016/j.jhazmat.2009.04.081 [16] EL-HENDAWY A N A. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon[J]. Carbon, 2003, 41(4): 713-722. doi: 10.1016/S0008-6223(03)00029-0 [17] CHEN J P, WU S, CHONG K H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption[J]. Carbon, 2003, 41(10): 1979-1986. doi: 10.1016/S0008-6223(03)00197-0 [18] 张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589. [19] CHU L B, XING X H, YU A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10): 1854-1860. doi: 10.1016/j.chemosphere.2007.03.014 [20] RODRIGUES M A S, KORZENOVSKI C, GONDRAN E, et al. Evaluation of changes on ion-selective membranes in contact with zinc-cyanide complexes[J]. Journal of Membrane Science, 2006, 279(1): 140-147. [21] BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5): 759-769. doi: 10.1016/0008-6223(94)90031-0 [22] NOH J S, SCHWARZ J A. Estimation of surface ionization constants for amphoteric solids[J]. Journal of Colloid and Interface Science, 1990, 139(1): 139-148. doi: 10.1016/0021-9797(90)90451-S [23] AKHTAR J, AMIN N S, ARIS A. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2 loaded activated carbon[J]. Chemical Engineering Journal, 2011, 170(1): 136-144. doi: 10.1016/j.cej.2011.03.043 [24] FARIA P C C, ÓRFÃO J J M, PEREIRA M F R. Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon[J]. Applied Catalysis B: Environmental, 2008, 83(1): 150-159. [25] KHUNTIA S, MAJUMDER S K, GHOSH P. Catalytic ozonation of dye in a microbubble system: Hydroxyl radical contribution and effect of salt[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2250-2258. doi: 10.1016/j.jece.2016.04.005 [26] 任源, 韦朝海, 吴超飞, 等. 生物流化床A/O2工艺处理焦化废水过程中有机组分的 GC/MS分析[J]. 环境科学学报, 2006, 26(11): 1785-1791. doi: 10.3321/j.issn:0253-2468.2006.11.006 [27] EL H K, KALNINA D, TURKS M, et al. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst[J]. Separation and Purification Technology, 2019, 210: 764-774. doi: 10.1016/j.seppur.2018.08.074 [28] 张静, 张守敬, 刘春, 等. 工业废水水质对微气泡臭氧化深度处理影响[J]. 环境科学, 2020, 41(4): 1752-1760.