-
厌氧氨氧化(anammox)技术的发明为生物脱氮提供了新路径[1-3],该技术主要应用于高温高氨氮工业废水处理[4-6]。生活污水排放量大耗能高,用厌氧氨氧化处理生活污水,将极大节约能源,减少剩余污泥的排放。然而多数生活污水有机物含量较高,有机物的存在会影响厌氧氨氧化菌的活性[7-8]。TANG等[9]研究发现,在进水COD/
$ {\rm{NO}}_2^ - $ -N比值为2.92时,反硝化菌群可显著抑制厌氧氨氧化细菌的生长。CHEN等[10]的研究表明,在COD值为284 mg·L−1时,厌氧氨氧化几乎受到完全抑制。ZHANG等[11]的研究表明,当COD/TN为1.7时厌氧氨氧化耦合反硝化脱氮性能较好。然而,上述研究均是以人工配水为研究对象,且$ {\rm{NO}}_2^ - $ -N和COD均为反硝化反应底物,COD/$ {\rm{NO}}_2^ - $ -N无法表征厌氧氨氧化和反硝化的耦合作用,而$ {\rm{NH}}_4^ + $ -N为厌氧氨氧化的反应底物。故本研究采取COD/$ {\rm{NH}}_4^ + $ -N表征厌氧氨氧化耦合反硝化程度,以实现半亚硝化的实际生活污水为厌氧氨氧化反应器(anaerobic sequencing batch reactor,ASBR)进水,在常温下考察了不同COD/$ {\rm{NH}}_4^ + $ -N比值对厌氧氨氧化耦合反硝化脱氮性能的影响,并采用高斯模型对总氮去除率进行了曲面计算,分析了厌氧氨氧化和部分反硝化-厌氧氨氧化对脱氮的贡献率,以期为该工艺用以实际生活污水的处理提供参考。
COD/${ {\rm{NH}}_4^ +} $ -N比对厌氧氨氧化耦合反硝化脱氮性能的影响
Effect of COD/${ {\bf{NH}}_4^ + }$ -N ratio on nitrogen removal by a coupling system of anaerobic ammonium oxidation and denitrification
-
摘要: 将实现半亚硝化的生活污水通入厌氧氨氧化反应器(ASBR),在室温下同步添加乙酸钠调控COD/
${ {\rm{NH}}_4^ + }$ -N比分别为2~3、3~5、5~7和7~9,在此条件下考察了系统的脱氮性能。结果表明:在COD/${ {\rm{NH}}_4^ + }$ -N比为3~5时,系统出水${ {\rm{NH}}_4^ + }$ -N、${ {\rm{NO}}_2^ - }$ -N、$ {{\rm{NO}}_3^ -} $ -N和COD值分别为2.30、0.65、5.56和35.20 mg·L−1;总氮容积负荷(TNLR)和去除负荷(TNRR)分别为0.071 kg·(m3·d)−1和0.062 kg·(m3·d)−1;在典型周期内$ {{\rm{NH}}_4^ + }$ -N和COD的比反应速率分别为0.809 mg·(g·h)−1和2.098 mg·(g·h)−1;厌氧氨氧化和部分反硝化-厌氧氨氧化对脱氮的贡献率分别为78%和20%。-
关键词:
- 厌氧氨氧化(anammox) /
- 生活污水 /
- COD/$ {\rm{NH}}_4^ + $-N比 /
- 脱氮贡献率 /
- 高斯模型
Abstract: The domestic sewage which had achieved partial nitrification was treated by an anaerobic sequencing batch reactor (ASBR) when sodium acetate was synchronously fed to control the COD/$ {\rm{NH}}_4^ + $ -N ratio. The denitrification performance of the system was investigated when the COD/$ {\rm{NH}}_4^ + $ -N ratios were set at 2~3, 3~5, 5~7 and 7~9, respectively at room temperature. At the COD/$ {\rm{NH}}_4^ + $ -N ratio of 3~5, the effluent concentrations of$ {\rm{NH}}_4^ + $ -N,$ {\rm{NO}}_2^ - $ -N,$ {\rm{NO}}_3^ - $ -N and COD were 2.30, 0.65, 5.56 and 35.20 mg·L−1, respectively, and the total nitrogen volume loading (TNLR) and removal loading (TNRR) were 0.071 kg·(m3·d)−1 and 0.062 kg·(m3·d)−1, respectively. The specific degradation rates of$ {\rm{NH}}_4^ + $ -N and COD were 0.809 mg·(g·h)−1 and 2.098 mg·(g·h)−1, respectively in typical cycles. Anaerobic anammox and partial denitrification coupled anammox accounted for 78% and 20% denitrification, respectively. -
表 1 厌氧氨氧化进水水质
Table 1. Quality of influent of amammox
COD/ $ {\rm{NH}}_4^ + $ -NCOD/(mg·L−1) $ {\rm{NH}}_4^ + $ -N/(mg·L−1)$ {\rm{NO}}_2^ - $ -N/(mg·L−1)$ {\rm{NO}}_3^ - $ -N/(mg·L−1)2~3 92.87~117.06 39.40~46.99 39.85~47.75 1.55~3.06 3~5 160.11~219.63 42.07~47.54 39.40~46.60 1.55~3.06 5~7 224.78~269.75 37.40~47.60 39.40~45.60 1.55~3.06 7~9 306.05~357.49 38.40~45.60 39.40~47.20 1.55~3.06 表 2 不同COD/
$ {\bf{NH}}_4^ + $ -N结果对比Table 2. Results at different COD/
$ {\rm{NH}}_4^ + $ -N ratios反应器 处理对象 COD/ $ {\rm{NH}}_4^ + $ -N去除率/% 脱氮贡献率/% 来源 $ {\rm{NH}}_4^ + $ -N$ {\rm{NO}}_2^ - $ -NA PD-A PN-A D ASBR 人工配水 0.67 92 95 − − − − [17] EGSB 人工配水 1.76 99 97 − − − − [18] ASBR 人工配水 5.7 >95 >95 − − − − [19] UASB 人工配水 1.56 94 96 − − − − [24] ASBR 生活污水 4 96 98 68 − − 32 [27] ASBR 人工配水 4.25~5.25 94 94 50 − − 50 [28] ASBR 生活污水 2~3 78 99 94 − 1.5 4.5 本研究 ASBR 生活污水 3~5 94 98 79 19 − − 本研究 ASBR 生活污水 5~7 54 98 71 10 − 17 本研究 ASBR 生活污水 7~9 61 99 51 − − 49 本研究 注:A为厌氧氨氧化对系统的脱氮贡献率;PD-A为部分反硝化-厌氧氨氧化对系统的脱氮贡献率;PN-A为短程硝化-厌氧氨氧化对系统的脱氮贡献率;D为反硝化对系统的脱氮贡献率。 -
[1] 刘安迪, 赵凯亮, 刘宏, 等. 不同控制策略下短程硝化启动及运行工况优化[J]. 环境科学, 2019, 40(10): 4569-4577. [2] CHEN Y Z, ZHAO Z C, LIU H, et al. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration[J]. Chemosphere, 2020, 245: 125650. doi: 10.1016/j.chemosphere.2019.125650 [3] 杨岚, 彭永臻, 李健伟, 等. 缺氧MBBR耦合部分厌氧氨氧化强化城市生活污水深度脱氮[J]. 环境科学, 2019, 40(8): 3668-3674. [4] 陈小珍, 汪晓军, KARASUTA C, 等. 反硝化-高效部分亚硝化-厌氧氨氧化工艺处理老龄垃圾渗滤液[J]. 环境科学, 2020, 41(1): 345-352. [5] 赵晴, 刘梦莹, 吕慧, 等. 耦合短程硝化反硝化的垃圾渗滤液厌氧氨氧化处理系统构建及微生物群落分析[J]. 环境科学, 2019, 40(9): 4195-4201. [6] 王凡, 陆明羽, 殷记强, 等. 反硝化-短程硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的脱氮除碳性能[J]. 环境科学, 2018, 39(8): 3782-3788. [7] 宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057-5065. [8] 马艳红, 赵智超, 安芳娇, 等. 不同COD浓度下低基质厌氧氨氧化的启动特征[J]. 环境科学, 2019, 40(5): 2317-2325. [9] TANG C J, ZHENG P, CHAI L Y, et al. Thermodynamic and kinetic investigation of anaerobic bioprocesses on ANAMMOX under high organic conditions[J]. Chemical Engineering Journal, 2013, 230: 149-157. doi: 10.1016/j.cej.2013.06.047 [10] CHEN C J, SUN F Q, ZHANG H Q, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology, 2016, 216: 571-578. doi: 10.1016/j.biortech.2016.05.115 [11] ZHANG X J, ZHANG H Z, YE C M, et al. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors[J]. Bioresource Technology, 2015, 189: 302-308. doi: 10.1016/j.biortech.2015.04.006 [12] GE S J, WANG S Y, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere, 2015, 140: 85-98. doi: 10.1016/j.chemosphere.2015.02.004 [13] 李柏林, 任晓玲, 李晔, 等. 溶解氧对单级颗粒污泥自养脱氮系统影响的模拟[J]. 中国环境科学, 2019, 39(12): 5126-5133. [14] 曹雁. 厌氧氨氧化与反硝化协同脱氮及微生物特性研究[D]. 广州: 华南理工大学, 2018. [15] 周同, 于德爽, 李津, 等. 温度对海洋厌氧氨氧化菌脱氮效能的影响[J]. 环境科学, 2017, 38(5): 2044-2051. [16] 尤永军. 游离氨(FA)对硝化菌活性的抑制影响试验研究[D]. 兰州: 兰州交通大学, 2015. [17] 朱泽沅, 于德爽, 李津. C/N比对ANAMMOX与反硝化协同脱氮性能影响及其动力学[J]. 环境工程学报, 2016, 10(6): 2813-2818. doi: 10.12030/j.cjee.201503158 [18] SHENG S X, LIU B, HOU X Y, et al. Effects of different carbon sources and C/N ratios on the simultaneous anammox and denitrification process[J]. International Biodeterioration & Biodegradation, 2018, 127: 26-34. [19] 操沈彬, 王淑莹, 吴程程, 等. 有机物对厌氧氨氧化系统的冲击影响[J]. 中国环境科学, 2013, 33(12): 2164-2169. [20] XU X C, XUE Y, WANG D, et al. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater[J]. Bioresource Technology, 2014, 155: 427-431. doi: 10.1016/j.biortech.2013.12.111 [21] LEAL C D, PEREIRA A D, NUNES F T, et al. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure[J]. Bioresource Technology, 2016, 211: 257-266. doi: 10.1016/j.biortech.2016.03.107 [22] DING S Z, BAO P, WANG B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339: 2193-2202. [23] MACHAT H, BOUDOKHANE C, ROCHE N, et al. Effects of C/N Ratio and DO concentration on carbon and nitrogen removals in a hybrid biological reactor[J]. Biochemical Engineering Journal, 2019, 151: 107313. doi: 10.1016/j.bej.2019.107313 [24] 张美雪, 李芸, 李军, 等. 低浓度乙酸盐诱导下厌氧氨氧化与异养反硝化高效耦合脱氮[J]. 环境工程学报, 2016, 10(11): 6127-6132. doi: 10.12030/j.cjee.201506020 [25] HE S L, YANG W, QIN M, et al. Performance and microbial community of anammox in presence of micro-molecule carbon source[J]. Chemosphere, 2018, 205: 545-552. doi: 10.1016/j.chemosphere.2018.04.136 [26] LYU L T, ZHANG K, LI Z J, et al. Inhibition of anammox activity by phenol: Suppression effect, community analysis and mechanism simulation[J]. International Biodeterioration & Biodegradation, 2019, 141: 30-38. [27] 安芳娇, 赵智超, 黄利, 等. HRT对厌氧氨氧化协同异养反硝化脱氮的影响[J]. 环境科学, 2018, 39(9): 4302-4309. [28] 魏思佳, 于德爽, 李津, 等. 厌氧氨氧化与反硝化耦合脱氮除碳研究Ⅰ: COD/ ${\rm{NH}}_4^{+} $ -N对耦合反应的影响[J]. 中国环境科学, 2016, 36(3): 759-767. doi: 10.3969/j.issn.1000-6923.2016.03.019[29] WANG B, PENG Y Z, GUO Y Y, et al. Impact of partial nitritation degree and C/N ratio on simultaneous sludge fermentation, denitrification and anammox process[J]. Bioresource Technology, 2016, 219: 411-419. doi: 10.1016/j.biortech.2016.07.114 [30] WANG X J, YANG R L, GUO Y, et al. Investigation of COD and COD/N ratio for the dominance of anammox pathway for nitrogen removal via isotope labelling technique and the relevant bacteria[J]. Journal of Hazardous Materials, 2019, 366: 606-614. doi: 10.1016/j.jhazmat.2018.12.036 [31] LI X J, SUN Y W, WANG Z W, et al. Theoretical understanding of the optimum conditions for a mainstream granular nitritation-anammox reactor coupled with anaerobic pretreatment[J]. Science of the Total Environment, 2019, 669: 683-691. doi: 10.1016/j.scitotenv.2019.03.117 [32] 俞津津. 多途径强化厌氧氨氧化工艺及其生物颗粒特性研究[D]. 杭州: 杭州师范大学, 2013.