[1] |
刘安迪, 赵凯亮, 刘宏, 等. 不同控制策略下短程硝化启动及运行工况优化[J]. 环境科学, 2019, 40(10): 4569-4577.
|
[2] |
CHEN Y Z, ZHAO Z C, LIU H, et al. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration[J]. Chemosphere, 2020, 245: 125650. doi: 10.1016/j.chemosphere.2019.125650
|
[3] |
杨岚, 彭永臻, 李健伟, 等. 缺氧MBBR耦合部分厌氧氨氧化强化城市生活污水深度脱氮[J]. 环境科学, 2019, 40(8): 3668-3674.
|
[4] |
陈小珍, 汪晓军, KARASUTA C, 等. 反硝化-高效部分亚硝化-厌氧氨氧化工艺处理老龄垃圾渗滤液[J]. 环境科学, 2020, 41(1): 345-352.
|
[5] |
赵晴, 刘梦莹, 吕慧, 等. 耦合短程硝化反硝化的垃圾渗滤液厌氧氨氧化处理系统构建及微生物群落分析[J]. 环境科学, 2019, 40(9): 4195-4201.
|
[6] |
王凡, 陆明羽, 殷记强, 等. 反硝化-短程硝化-厌氧氨氧化工艺处理晚期垃圾渗滤液的脱氮除碳性能[J]. 环境科学, 2018, 39(8): 3782-3788.
|
[7] |
宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057-5065.
|
[8] |
马艳红, 赵智超, 安芳娇, 等. 不同COD浓度下低基质厌氧氨氧化的启动特征[J]. 环境科学, 2019, 40(5): 2317-2325.
|
[9] |
TANG C J, ZHENG P, CHAI L Y, et al. Thermodynamic and kinetic investigation of anaerobic bioprocesses on ANAMMOX under high organic conditions[J]. Chemical Engineering Journal, 2013, 230: 149-157. doi: 10.1016/j.cej.2013.06.047
|
[10] |
CHEN C J, SUN F Q, ZHANG H Q, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology, 2016, 216: 571-578. doi: 10.1016/j.biortech.2016.05.115
|
[11] |
ZHANG X J, ZHANG H Z, YE C M, et al. Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors[J]. Bioresource Technology, 2015, 189: 302-308. doi: 10.1016/j.biortech.2015.04.006
|
[12] |
GE S J, WANG S Y, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere, 2015, 140: 85-98. doi: 10.1016/j.chemosphere.2015.02.004
|
[13] |
李柏林, 任晓玲, 李晔, 等. 溶解氧对单级颗粒污泥自养脱氮系统影响的模拟[J]. 中国环境科学, 2019, 39(12): 5126-5133.
|
[14] |
曹雁. 厌氧氨氧化与反硝化协同脱氮及微生物特性研究[D]. 广州: 华南理工大学, 2018.
|
[15] |
周同, 于德爽, 李津, 等. 温度对海洋厌氧氨氧化菌脱氮效能的影响[J]. 环境科学, 2017, 38(5): 2044-2051.
|
[16] |
尤永军. 游离氨(FA)对硝化菌活性的抑制影响试验研究[D]. 兰州: 兰州交通大学, 2015.
|
[17] |
朱泽沅, 于德爽, 李津. C/N比对ANAMMOX与反硝化协同脱氮性能影响及其动力学[J]. 环境工程学报, 2016, 10(6): 2813-2818. doi: 10.12030/j.cjee.201503158
|
[18] |
SHENG S X, LIU B, HOU X Y, et al. Effects of different carbon sources and C/N ratios on the simultaneous anammox and denitrification process[J]. International Biodeterioration & Biodegradation, 2018, 127: 26-34.
|
[19] |
操沈彬, 王淑莹, 吴程程, 等. 有机物对厌氧氨氧化系统的冲击影响[J]. 中国环境科学, 2013, 33(12): 2164-2169.
|
[20] |
XU X C, XUE Y, WANG D, et al. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater[J]. Bioresource Technology, 2014, 155: 427-431. doi: 10.1016/j.biortech.2013.12.111
|
[21] |
LEAL C D, PEREIRA A D, NUNES F T, et al. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure[J]. Bioresource Technology, 2016, 211: 257-266. doi: 10.1016/j.biortech.2016.03.107
|
[22] |
DING S Z, BAO P, WANG B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339: 2193-2202.
|
[23] |
MACHAT H, BOUDOKHANE C, ROCHE N, et al. Effects of C/N Ratio and DO concentration on carbon and nitrogen removals in a hybrid biological reactor[J]. Biochemical Engineering Journal, 2019, 151: 107313. doi: 10.1016/j.bej.2019.107313
|
[24] |
张美雪, 李芸, 李军, 等. 低浓度乙酸盐诱导下厌氧氨氧化与异养反硝化高效耦合脱氮[J]. 环境工程学报, 2016, 10(11): 6127-6132. doi: 10.12030/j.cjee.201506020
|
[25] |
HE S L, YANG W, QIN M, et al. Performance and microbial community of anammox in presence of micro-molecule carbon source[J]. Chemosphere, 2018, 205: 545-552. doi: 10.1016/j.chemosphere.2018.04.136
|
[26] |
LYU L T, ZHANG K, LI Z J, et al. Inhibition of anammox activity by phenol: Suppression effect, community analysis and mechanism simulation[J]. International Biodeterioration & Biodegradation, 2019, 141: 30-38.
|
[27] |
安芳娇, 赵智超, 黄利, 等. HRT对厌氧氨氧化协同异养反硝化脱氮的影响[J]. 环境科学, 2018, 39(9): 4302-4309.
|
[28] |
魏思佳, 于德爽, 李津, 等. 厌氧氨氧化与反硝化耦合脱氮除碳研究Ⅰ: COD/ ${\rm{NH}}_4^{+} $-N对耦合反应的影响[J]. 中国环境科学, 2016, 36(3): 759-767. doi: 10.3969/j.issn.1000-6923.2016.03.019
|
[29] |
WANG B, PENG Y Z, GUO Y Y, et al. Impact of partial nitritation degree and C/N ratio on simultaneous sludge fermentation, denitrification and anammox process[J]. Bioresource Technology, 2016, 219: 411-419. doi: 10.1016/j.biortech.2016.07.114
|
[30] |
WANG X J, YANG R L, GUO Y, et al. Investigation of COD and COD/N ratio for the dominance of anammox pathway for nitrogen removal via isotope labelling technique and the relevant bacteria[J]. Journal of Hazardous Materials, 2019, 366: 606-614. doi: 10.1016/j.jhazmat.2018.12.036
|
[31] |
LI X J, SUN Y W, WANG Z W, et al. Theoretical understanding of the optimum conditions for a mainstream granular nitritation-anammox reactor coupled with anaerobic pretreatment[J]. Science of the Total Environment, 2019, 669: 683-691. doi: 10.1016/j.scitotenv.2019.03.117
|
[32] |
俞津津. 多途径强化厌氧氨氧化工艺及其生物颗粒特性研究[D]. 杭州: 杭州师范大学, 2013.
|