LI Yan, SHAN Baoqing, TANG Wenzhong, CHEN Jing. Pollution characteristic of sediment oxygen demand in typical urban river (Liangshui River) of Beijing city, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5065-5070. doi: 10.12030/j.cjee.201609081
Citation: LI Yan, SHAN Baoqing, TANG Wenzhong, CHEN Jing. Pollution characteristic of sediment oxygen demand in typical urban river (Liangshui River) of Beijing city, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5065-5070. doi: 10.12030/j.cjee.201609081

Pollution characteristic of sediment oxygen demand in typical urban river (Liangshui River) of Beijing city, China

  • Received Date: 23/10/2016
    Accepted Date: 08/09/2016
    Available Online: 26/08/2017
    Fund Project:
  • Based on oxygen demand pollution in the typical urban rivers of Beiyun River Basin, Liangshui River was selected for this study. The distribution characteristics of NH4+-N, TOC, and sediment oxygen demand (SOD) in the sediments from the upstream, middle and downstream of Liangshui River were investigated. The results showed that the contents of NH4+-N and TOC in the sediment samples were high. NH4+-N contents were higher in the upstream (mean value 114.38 mg·kg-1), and lower in the midstream (mean value 54.06 mg·kg-1).TOC contents were 3.64%, 3.36% and 1.81% in the upstream, middle and downstream of Liangshui River, respectively. SOD in the middle of Liangshui River was highest (mean value 1.012 g·(m2·d)-1), and lowest in the upstream (mean value 0.939 g·(m2·d)-1).
  • [1] 朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J]. 湖泊科学, 2001, 13(3):272-279

    Google Scholar Pub Med

    [2] MA Z W, CHEN K, YUAN Z W, et al. Ecological risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes[J]. Journal of Environmental Quality, 2013, 42(2):341-350

    Google Scholar Pub Med

    [3] 聂新华, 郎印海, 贾永刚. 胶州湾河口沉积物中耗氧有机物的释放研究[J]. 海洋环境科学, 2006, 25(4):11-14

    Google Scholar Pub Med

    [4] FU J, ZHAO C P, LUO Y P, et al. Heavy metals in surface sediments of the Jialu River, China:Their relations to environmental factors[J]. Journal of Hazardous Materials, 2014, 270:102-109

    Google Scholar Pub Med

    [5] SENER S, DAVRAZ A, KARAGUZEL R. Assessment of trace metal contents in water and bottom sediments from Eğirdir Lake, Turkey[J]. Environment Earth Science, 2014, 71(6):1-13

    Google Scholar Pub Med

    [6] 蒋新,许士奋,MARTENS D,等. 长江南京段水、悬浮物及沉积物中多氯有毒有机污染物[J]. 中国环境科学, 2000, 20(3):193-197

    Google Scholar Pub Med

    [7] 谢婷, 张淑娟, 杨瑞强. 偏远高山湖泊沉积物中持久性有机污染物的沉积记录研究[J]. 环境化学, 2014, 33(10):1791-1801

    Google Scholar Pub Med

    [8] 马晓磊, 徐继荣, 张德民,等. 城市内河强还原性沉积物耗氧及相关因素研究[J]. 环境科学研究, 2010, 23(12):1499-1505

    Google Scholar Pub Med

    [9] WALKER R, SNODGRASS W. Model for sediment oxygen demand in lakes[J].Journal of Environmental Engineering, 1986, 112(1):25-43

    Google Scholar Pub Med

    [10] BELANGER T V. Benthic oxygen demand in lake Apopka, Flordia[J]. Water Research, 1981, 15(2):267-274

    Google Scholar Pub Med

    [11] 乔士斌, 林钦. 大鹏澳网箱养殖区沉积物耗氧的初步研究[J]. 南方水产, 2006, 2(3):32-39

    Google Scholar Pub Med

    [12] PARR L, MASON C. Causes of low oxygen in a lowland, regulated eutrophic river in Eastern England[J]. Science of Total Environment, 2004, 321(1/2/3):273-286

    Google Scholar Pub Med

    [13] HATCHER K J. Sediment oxygen demand:Processes, modeling, and measurement[D]. Athens, Georgia:University of Georgia Institute of Natural Resources, 1986

    Google Scholar Pub Med

    [14] ZIADAT A H, BERDANIER B W. Stream depth significance during in-situ sediment oxygen demand measurements in shallow streams[J]. Journal of the American Water Resources Association, 2004, 40(3):631-638

    Google Scholar Pub Med

    [15] JOSIAM R M, STEFAN H G. Effect of flow velocity on sediment oxygen demand:Comparison of theory and experiments[J]. Journal of the American Water Resources Association, 1999, 35(2):433-439

    Google Scholar Pub Med

    [16] 彭斌,黄金田,王资生.沿海滩涂养殖水体中溶解氧的变化及其影响因素[J]. 水生态学杂志, 2008, 29(5):97-99

    Google Scholar Pub Med

    [17] 郭婧, 荆红卫, 李金香,等. 北运河系地表水近10年来水质变化及影响因素分析[J]. 环境科学, 2012, 33(5):1511-1518

    Google Scholar Pub Med

    [18] 许晓伟, 刘德文, 车洪军,等. 北运河水环境调查与评价[J]. 海河水利, 2009(2):14-15

    Google Scholar Pub Med

    [19] 童保铭, 陈添, 徐谦, 等. 北京市北运河系水质有机污染时空变化研究[J]. 首都师范大学学报(自然科学版), 2009, 30(3):56-60

    Google Scholar Pub Med

    [20] 鲍士旦. 土壤农化分析[M].3版. 北京:中国农业出版社, 2013

    Google Scholar Pub Med

    [21] CHAU K W. Field measurements of SOD and sediment nutrient fluxes in a land-locked embayment in Hong Kong[J]. Advances in Environmental Research, 2002, 6(2):135-142

    Google Scholar Pub Med

    [22] 臧家业, 庞雪辉, 冉祥滨,等. 底泥耗氧研究的主要技术手段及进展[J]. 海洋开发与管理, 2010, 27(11):36-40

    Google Scholar Pub Med

    [23] RASMUSSEN H, JORGENSEN B B. Microelectrode studies of seasonal oxygen uptake in a coastal sediment:Role of molecular diffusion[J]. Marine Ecology Progress Series, 1992, 81(3):289-303

    Google Scholar Pub Med

    [24] BERG P, RISGAARA P N, RYSGAARD S. Interpretation of measured concentration profiles in sediment pore water[J]. Limnology and Oceanography, 1998, 43(7):1500-1510

    Google Scholar Pub Med

    [25] BERG P, RΦY H, JANSSEN F, et al. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy correlation technique[J]. Marine Ecology Progress, 2003, 261(8):75-83

    Google Scholar Pub Med

    [26] BER P, RΦY H, WIBERG P. Eddy correlation flux measurements:The sediment surface area that contributes to the flux[J]. Limnology and Oceanography, 2007, 52(4):1672-1684

    Google Scholar Pub Med

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionDOWNLOAD: 1.8 %DOWNLOAD: 1.8 %FULLTEXT: 87.8 %FULLTEXT: 87.8 %META: 10.3 %META: 10.3 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 89.2 %其他: 89.2 %Ashburn: 0.3 %Ashburn: 0.3 %Beijing: 2.1 %Beijing: 2.1 %Boulder: 0.3 %Boulder: 0.3 %Hangzhou: 0.3 %Hangzhou: 0.3 %Jinan: 0.2 %Jinan: 0.2 %Kunshan: 0.2 %Kunshan: 0.2 %Newark: 0.2 %Newark: 0.2 %Qingdao: 0.2 %Qingdao: 0.2 %Shanghai: 0.2 %Shanghai: 0.2 %Shijiazhuang: 0.2 %Shijiazhuang: 0.2 %Wuhan: 0.3 %Wuhan: 0.3 %Xingfeng: 0.5 %Xingfeng: 0.5 %XX: 3.4 %XX: 3.4 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhongshan: 0.2 %Zhongshan: 0.2 %北京: 0.7 %北京: 0.7 %桂林: 0.2 %桂林: 0.2 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.2 %深圳: 0.2 %贵港: 0.2 %贵港: 0.2 %郑州: 0.7 %郑州: 0.7 %阳泉: 0.2 %阳泉: 0.2 %其他AshburnBeijingBoulderHangzhouJinanKunshanNewarkQingdaoShanghaiShijiazhuangWuhanXingfengXXYunchengZhongshan北京桂林洛阳深圳贵港郑州阳泉Highcharts.com
  • Cited by

    1. 朱雨锋,孙柳,李立青,张洪,唐文忠. 黑臭水体治理Ⅰ:水体氧状态对沉积物中重金属形态及生物有效性的影响. 环境科学学报. 2023(02): 1-10 .
    2. 周佳男,方梦园,雷啟焘,侯国庆,赵天慧,张思远,赵晓丽,汤智. 木兰溪感潮河段沉积物耗氧速率及其相关影响因素研究. 环境科学研究. 2023(08): 1518-1531 .
    3. 齐小天,张质明. 基于景观格局的降雨径流污染风险评价方法. 环境污染与防治. 2022(06): 755-762 .
    4. 王斌,黄廷林,陈凡,杨鹏程,叶焰中,翟振起,周碧雯. 亚热带水库水质特征及沉积物内源污染研究. 中国环境科学. 2021(10): 4829-4836 .
    5. 田颖,郭婧,梁云平,刘京,荆红卫. 北京市河流氨氮浓度时空演变特征分析. 中国环境监测. 2020(01): 75-81 .
    6. 王海邻,刘玉飞,任玉芬,贺玉晓,王思琪,张红星,王效科,李紫鑫. 北京市河流秋季浮游动物群落特征分析. 环境科学. 2019(08): 3568-3576 .
    7. 张燕,陶进雄,梁妙,洪凤明,张文韬,黄倩倩. 中山市典型污染河涌水体整治试验方法和效果分析. 环境工程. 2019(10): 73-77 .
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2369) PDF downloads(485) Cited by(10)

Access History

Pollution characteristic of sediment oxygen demand in typical urban river (Liangshui River) of Beijing city, China

Fund Project:

Abstract: Based on oxygen demand pollution in the typical urban rivers of Beiyun River Basin, Liangshui River was selected for this study. The distribution characteristics of NH4+-N, TOC, and sediment oxygen demand (SOD) in the sediments from the upstream, middle and downstream of Liangshui River were investigated. The results showed that the contents of NH4+-N and TOC in the sediment samples were high. NH4+-N contents were higher in the upstream (mean value 114.38 mg·kg-1), and lower in the midstream (mean value 54.06 mg·kg-1).TOC contents were 3.64%, 3.36% and 1.81% in the upstream, middle and downstream of Liangshui River, respectively. SOD in the middle of Liangshui River was highest (mean value 1.012 g·(m2·d)-1), and lowest in the upstream (mean value 0.939 g·(m2·d)-1).

Reference (26)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint