溢油污染对硬骨鱼类毒性效应的研究进展

徐侨悦, 李西山, 熊德琪. 溢油污染对硬骨鱼类毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001
引用本文: 徐侨悦, 李西山, 熊德琪. 溢油污染对硬骨鱼类毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001
XU Qiaoyue, LI Xishan, XIONG Deqi. Research Progress on Toxic Effects of Oil Spill Pollution in the Teleost Fish[J]. Asian journal of ecotoxicology, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001
Citation: XU Qiaoyue, LI Xishan, XIONG Deqi. Research Progress on Toxic Effects of Oil Spill Pollution in the Teleost Fish[J]. Asian journal of ecotoxicology, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001

溢油污染对硬骨鱼类毒性效应的研究进展

    作者简介: 徐侨悦(1996—),女,博士研究生,研究方向为环境毒理学,E-mail:xu_zga@163.com
    通讯作者: 熊德琪(1967-),男,博士,教授,主要研究方向为海洋溢油等污染物环境行为与生态效应。E-mail:xiongdq@dlmu.edu.cn
  • 基金项目:

    国家重点研发计划项目(2023YFC3108303);国家自然青年科学基金项目(42206158);国家自然科学基金面上项目(42076167)

  • 中图分类号: X171.5

Research Progress on Toxic Effects of Oil Spill Pollution in the Teleost Fish

    Corresponding author: XIONG Deqi, xiongdq@dlmu.edu.cn
  • Fund Project:
  • 摘要: 综述并分析了国内外溢油污染对硬骨鱼类的毒性效应的研究现状。多环芳烃(polycyclic aromatic hydrocarbons, PAHs)作为溢油污染中危害水生生物的主要致毒组分,能够通过多种暴露途径对硬骨鱼类造成不良影响,且主要通过氧化应激、胚胎发育毒性、神经毒性、心脏毒性、肝脏和肾脏毒性等方式对机体产生组织结构损伤、器官功能障碍等损害。本文旨在提出当前研究中尚未解决的相关问题,为未来全面解析溢油污染造成的生物毒性机制和评估生态风险提供基础理论依据。
  • 加载中
  • 杨鸢劼. 鱼类作为实验动物在环境毒理学研究中的应用[J]. 水产科技情报, 2010, 37(4): 187-190

    Yang Y J. Application of fish in environmental toxicology as experimental animal[J]. Fisheries Science & Technology Information, 2010, 37(4): 187-190(in Chinese)

    Khursigara A J, Rowsey L E, Johansen J L, et al. Behavioral changes in a coastal marine fish lead to increased predation risk following oil exposure[J]. Environmental Science & Technology, 2021, 55(12): 8119-8127
    Ylitalo G M, Collier T K, Anulacion B F, et al. Determining oil and dispersant exposure in sea turtles from the northern Gulf of Mexico resulting from the Deepwater Horizon Oil Spill[J]. Endangered Species Research, 2017, 33: 9-24
    Di Toro D M, McGrath J A, Hansen D J. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue[J]. Environmental Toxicology and Chemistry, 2000, 19(8): 1951-1970
    高振会, 杨建强, 崔文林, 等. 海洋溢油对环境与生态损害评估技术及应用[M]. 北京: 海洋出版社, 2005: 6-16
    Zhang R J, Han M W, Yu K F, et al. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: A case study in spring-summer[J]. Journal of Hazardous Materials, 2021, 412: 125214
    Baars B J. The wreckage of the oil tanker 'Erika’: Human health risk assessment of beach cleaning, sunbathing and swimming[J]. Toxicology Letters, 2002, 128(1/2/3): 55-68
    González J J, Viñas L, Franco M A, et al. Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige Oil Spill[J]. Marine Pollution Bulletin, 2006, 53(5/6/7): 250-259
    Laffon B, Rábade T, Pásaro E, et al. Monitoring of the impact of Prestige Oil Spill on Mytilus galloprovincialis from Galician coast[J]. Environment International, 2006, 32(3): 342-348
    Zhang C C, Li Y L, Wang C L, et al. Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: Bioaccumulation and human health risk assessment[J]. Marine Pollution Bulletin, 2020, 153: 110995
    丁家琪, 罗丽娟, 栾天罡. 海洋多环芳烃及其衍生物的污染特征和来源分析[J]. 环境化学, 2023, 42(3): 893-903

    Ding J Q, Luo L J, Luan T G. Characteristics and source analysis of polycyclic aromatic hydrocarbons and their derivatives in marine environment[J]. Environmental Chemistry, 2023, 42(3): 893-903(in Chinese)

    Oliva A L, La Colla N S, Arias A H, et al. Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary[J]. Environmental Science and Pollution Research International, 2017, 24(23): 18979-18990
    Zhang J C, Zhang X R, Hu T, et al. Polycyclic aromatic hydrocarbons (PAHs) and antibiotics in oil-contaminated aquaculture areas: Bioaccumulation, influencing factors, and human health risks[J]. Journal of Hazardous Materials, 2022, 437: 129365
    张文博, 刘宾绪, 江涛, 等. 环渤海渔港沉积物多环芳烃的污染特征和生态风险评价[J]. 环境化学, 2022, 41(2): 561-571

    Zhang W B, Liu B X, Jiang T, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from fishing ports along the coast of Bohai Sea[J]. Environmental Chemistry, 2022, 41(2): 561-571(in Chinese)

    Romero I C, Sutton T, Carr B, et al. Decadal assessment of polycyclic aromatic hydrocarbons in mesopelagic fishes from the GulfMexico reveals exposure to oil-derived sources[J]. Environmental Science & Technology, 2018, 52(19): 10985-10996
    Bilbao D, De Miguel-Jiménez L, Igartua A, et al. Chemical characterization of oil and water accommodated fraction (WAF) at different temperatures[J]. Results in Engineering, 2022, 14: 100433
    Nayak S, Dash S N, Pati S S, et al. Lipid peroxidation and antioxidant levels in Anabas testudineus (Bloch) under naphthalene (PAH) stress[J]. Aquaculture Research, 2021, 52(11): 5739-5749
    Incardona J P, Carls M G, Day H L, et al. Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering[J]. Environmental Science & Technology, 2009, 43(1): 201-207
    齐晓宝, 吴健, 王敏, 等. 溢油污染滩涂水体中多环芳烃组成分布及风险[J]. 环境科学与技术, 2017, 40(3): 172-177

    Qi X B, Wu J, Wang M, et al. Composition distribution and ecological risk assessment of PAHs in water from oil spill to tidal marshes[J]. Environmental Science & Technology, 2017, 40(3): 172-177(in Chinese)

    Xu E G, Khursigara A J, Li S Y, et al. mRNA-miRNA-seq reveals neuro-cardio mechanisms of crude oil toxicity in red drum (Sciaenops ocellatus)[J]. Environmental Science & Technology, 2019, 53(6): 3296-3305
    Cherr G N, Fairbairn E, Whitehead A. Impacts of petroleum-derived pollutants on fish development[J]. Annual Review of Animal Biosciences, 2017, 5: 185-203
    Mu J L, Wang J Y, Jin F, et al. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma)[J]. Marine Pollution Bulletin, 2014, 85(2): 505-515
    Incardona J P, Collier T K, Scholz N L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons[J]. Toxicology and Applied Pharmacology, 2004, 196(2): 191-205
    Incardona J P, Day H L, Collier T K, et al. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism[J]. Toxicology and Applied Pharmacology, 2006, 217(3): 308-321
    Incardona J P, Linbo T L, Scholz N L. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development[J]. Toxicology and Applied Pharmacology, 2011, 257(2): 242-249
    Sathikumaran R, Madhuvandhi J, Priya K K, et al. Evaluation of benzoa] pyrene-induced toxicity in the estuarine thornfish Therapon jarbua[J]. Toxicology Reports, 2022, 9: 720-727
    Rodgers M L, Sherwood T A, Tarnecki A M, et al. Characterizing transcriptomic responses of southern flounder (Paralichthys lethostigma) chronically exposed to Deepwater Horizon oiled sediments[J]. Aquatic Toxicology, 2021, 230: 105716
    Turner R E, Overton E B, Meyer B M, et al. Changes in the concentration and relative abundance of alkanes and PAHs from the Deepwater Horizon oiling of coastal marshes[J]. Marine Pollution Bulletin, 2014, 86(1/2): 291-297
    Reddy C M, Arey J S, Seewald J S, et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon Oil Spill[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20229-20234
    Esbaugh A J, Mager E M, Stieglitz J D, et al. The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages[J]. Science of the Total Environment, 2016, 543(Pt A): 644-651
    Ozhan K. How weathering might intensify the toxicity of spilled crude oil in marine environments[J]. Environmental Science and Pollution Research International, 2023, 30(44): 99561-99569
    Fedan J S, Thompson J A, Sager T M, et al. Toxicological effects of inhaled crude oil vapor[J]. Current Environmental Health Reports, 2024, 11(1): 18-29
    Gurung S, Dubansky B, Virgen C A, et al. Effects of crude oil vapors on the cardiovascular flow of embryonic gulf killifish[J]. Science of the Total Environment, 2021, 751: 141627
    Mai Y Z, Wang Y F, Geng T, et al. A systematic toxicologic study of polycyclic aromatic hydrocarbons on aquatic organisms via food-web bioaccumulation[J]. Science of the Total Environment, 2024, 929: 172362
    田丽娜, 杨金生, 周佑霖, 等. 原油对潮间带大弹涂鱼(Boleophthalmus pectinirostris)抗氧化酶活性影响的初步探究[J]. 海洋环境科学, 2022, 41(1): 135-141

    Tian L N, Yang J S, Zhou Y L, et al. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Marine Environmental Science, 2022, 41(1): 135-141(in Chinese)

    Pasparakis C, Mager E M, Stieglitz J D, et al. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus)[J]. Aquatic Toxicology, 2016, 181: 113-123
    薄军, 吴世军, 李裕红, 等. 苯并[a]芘(BaP)对真鲷细胞色素P450和芳香烃受体基因表达的影响[J]. 中山大学学报(自然科学版), 2010, 49(3): 93-97Bo J, Wu S J, Li Y H, et al. The effects of benzo[a]pyrene (BaP) exposure on the CYP1A1 mRNA and AhR2 mRNA expression of red seabream (Pagrus major)[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(3): 93-97(in Chinese)
    孙文静, 王晓艳, 祁鹏志, 等. 苯并[a]芘(BaP)对褐菖鲉(Sebasticus marmoratus)肝CYP1A1酶活性、基因表达及蛋白表达的影响[J]. 海洋与湖沼, 2018, 49(4): 897-903

    Sun W J, Wang X Y, Qi P Z, et al. Effects of benzo[a] pyrene on EROD activity, mRNA expression, and protein expression of CYP1A1 in the liver of Sebasticus marmoratus[J]. Oceanologia et Limnologia Sinica, 2018, 49(4): 897-903(in Chinese)

    Mu J L, Jin F, Ma X D, et al. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma)[J]. Environmental Toxicology and Chemistry, 2014, 33(11): 2576-2583
    Yan M, Leung P T, Ip J C, et al. Developmental toxicity and molecular responses of marine medaka (Oryzias melastigma) embryos to ciguatoxin P-CTX-1 exposure[J]. Aquatic Toxicology, 2017, 185: 149-159
    Adeyemo O K, Kroll K J, Denslow N D. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos[J]. Aquatic Toxicology, 2015, 168: 60-71
    Ni X M, Shen Y J. Transgenerational effects of hexavalent chromium on marine medaka (Oryzias melastigma) reveal complex transgenerational adaptation in offspring[J]. Biomolecules, 2021, 11(2): 138
    Khursigara A J, Perrichon P, Martinez Bautista N, et al. Cardiac function and survival are affected by crude oil in larval red drum, Sciaenops ocellatus[J]. Science of the Total Environment, 2017, 579: 797-804
    Frantzen M, Falk-Petersen I B, Nahrgang J, et al. Toxicity of crude oil and pyrene to the embryos of beach spawning capelin (Mallotus villosus)[J]. Aquatic Toxicology, 2012, 108: 42-52
    Carls M G, Rice S D, Hose J E. Sensitivity of fish embryos to weathered crude oil: Part I. low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi)[J]. Environmental Toxicology and Chemistry, 1999, 18(3): 481-493
    Hansen B H, Arukwe A, Knutsen H M, et al. Effects of exposure timing on cyp1a expression, PAH elimination, and lipid utilization in lumpfish embryos exposed to produced water[J]. Environmental Science & Technology, 2023, 57(20): 7666-7674
    Li X S, Xiong D Q, Ding G H, et al. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish[J]. Chemosphere, 2019, 235: 423-433
    李西山, 姜曦, 丁光辉, 等. 阿曼原油和溢油分散剂对斑马鱼(Danio rerio)胚胎形态发育的毒性效应[J]. 生态毒理学报, 2017, 12(6): 281-290

    Li X S, Jiang X, Ding G H, et al. Morphological and developmental toxicity of Oman crude oil and dispersant to zebrafish (Danio rerio) embryos[J]. Asian Journal of Ecotoxicology, 2017, 12(6): 281-290(in Chinese)

    Sørhus E, Donald C E, da Silva D, et al. Untangling mechanisms of crude oil toxicity: Linking gene expression, morphology and PAHs at two developmental stages in a cold-water fish[J]. Science of the Total Environment, 2021, 757: 143896
    Gao D X, Wu M F, Wang C G, et al. Chronic exposure to low benzo[a] pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2015, 167: 200-208
    Khursigara A J, Ackerly K L, Esbaugh A J. Pyrene drives reduced brain size during early life exposure in an estuarine fish, the red drum (Sciaenops ocellatus)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 259: 109397
    Nayak S, Patnaik L. Acetylcholinesterase, as a potential biomarker of naphthalene toxicity in different tissues of freshwater teleost, Anabas testudineus[J]. Journal of Environmental Engineering and Landscape Management, 2021, 29(4): 403-409
    Knecht A L, Truong L, Simonich M T, et al. Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish[J]. Neurotoxicology and Teratology, 2017, 59: 27-34
    Xu E G, Mager E M, Grosell M, et al. Time- and oil-dependent transcriptomic and physiological responses to deepwater horizon oil in mahi-mahi (Coryphaena hippurus) embryos and larvae[J]. Environmental Science & Technology, 2016, 50(14): 7842-7851
    Gilsbach R, Schwaderer M, Preissl S, et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo[J]. Nature Communications, 2018, 9(1): 391
    Incardona J P, Gardner L D, Linbo T L, et al. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): E1510-E1518
    Huang Y, Wang Z Q, Peng Y Y, et al. Carboxin can induce cardiotoxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2022, 233: 113318
    Zheng Y Q, Li Y J, Yue Z H, et al. Teratogenic effects of environmentally relevant concentrations of phenanthrene on the early development of marine medaka (Oryzia melastigma)[J]. Chemosphere, 2020, 254: 126900
    Brette F, Shiels H A, Galli G L, et al. A novel cardiotoxic mechanism for a pervasive global pollutant[J]. Scientific Reports, 2017, 7: 41476
    Incardona J P. Molecular mechanisms of crude oil developmental toxicity in fish[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(1): 19-32
    Carney S A, Chen J, Burns C G, et al. Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish[J]. Molecular Pharmacology, 2006, 70(2): 549-561
    Brette F, Machado B, Cros C, et al. Crude oil impairs cardiac excitation-contraction coupling in fish[J]. Science, 2014, 343(6172): 772-776
    Córdova-de la Cruz S E, Martínez-Bautista G, Peña-Marín E S, et al. Morphological and cardiac alterations after crude oil exposure in the early-life stages of the tropical gar (Atractosteus tropicus)[J]. Environmental Science and Pollution Research International, 2022, 29(15): 22281-22292
    Incardona J P, Carls M G, Holland L, et al. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring[J]. Scientific Reports, 2015, 5: 13499
    钟林燕, 谢勇平, 赖静萍, 等. 3, 4-苯并芘暴露对食蚊鱼生长发育的毒性影响[J]. 江西农业学报, 2014, 26(4): 94-97

    Zhong L Y, Xie Y P, Lai J P, et al. Toxic effects of 3, 4-benzopyrene exposure on growth and development of mosquitofish[J]. Acta Agriculturae Jiangxi, 2014, 26(4): 94-97(in Chinese)

    Peng X D, Sun X X, Yu M, et al. Chronic exposure to environmental concentrations of phenanthrene impairs zebrafish reproduction[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109376
    Chen Y, Zhang Y, Yu Z N, et al. Early-life phenanthrene exposure inhibits reproductive ability in adult zebrafish and the mechanism of action[J]. Chemosphere, 2021, 272: 129635
    Sun L B, Zuo Z H, Chen M, et al. Reproductive and transgenerational toxicities of phenanthrene on female marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2015, 162: 109-116
    Bautista N M, Crespel A, M Bautista G, et al. Dietary crude oil exposure during sex differentiation skewed adult sex ratio towards males in the zebrafish[J]. Science of the Total Environment, 2023, 892: 164449
    Özkan-Kotiloǧlu S, Arslan P, Akca G, et al. Are BPA-free plastics safe for aquatic life? - Fluorene-9-bisphenol induced thyroid-disrupting effects and histopathological alterations in adult zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2022, 260: 109419
    Zha J M, Hong X S, Rao H O, et al. Benzo(a)pyrene-induced a mitochondria-independent apoptosis of liver in juvenile Chinese rare minnows (Gobiocypris rarus)[J]. Environmental Pollution, 2017, 231: 191-199
    Baumann P C, Harshbarger J C. Long term trends in liver neoplasm epizootics of brown bullhead in the Black River, Ohio[J]. Environmental Monitoring and Assessment, 1998, 53(1): 213-223
    Lee E H, Kim M, Moon Y S, et al. Adverse effects and immune dysfunction in response to oral administration of weathered Iranian heavy crude oil in the rockfish Sebastes schlegeli[J]. Aquatic Toxicology, 2018, 200: 127-135
    穆景利, 王新红, 林建清, 等. 苯并[a]芘对黑鲷肝脏GST活性的影响及其与肝脏代谢酶和胆汁代谢产物之间的变化关系[J]. 生态毒理学报, 2009, 4(4): 516-523

    Mu J L, Wang X H, Lin J Q, et al. Effects of benzo[a]pyrene exposure on hepatic GST activity in black porgy(Sparus macrocephalus)and variation relationships with hepatic metabolic enzymes and biliary metabolites[J]. Asian Journal of Ecotoxicology, 2009, 4(4): 516-523(in Chinese)

    Sherwood T A, Rodgers M L, Tarnecki A M, et al. Characterization of the differential expressed genes and transcriptomic pathway analysis in the liver of sub-adult red drum (Sciaenops ocellatus) exposed to Deepwater Horizon chemically dispersed oil[J]. Ecotoxicology and Environmental Safety, 2021, 214: 112098
    Bayha K M, Ortell N, Ryan C N, et al. Crude oil impairs immune function and increases susceptibility to pathogenic bacteria in southern flounder[J]. PLoS One, 2017, 12(5): e0176559
    Olivares-Rubio H F, Salazar-Coria L, Romero-López J P, et al. Fatty acid metabolism and brain mitochondrial performance of juvenile Niletilapia (Oreochromis niloticus) exposed to the water-accommodated fraction ofMaya crude oil[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110624
    Hook S E, Mondon J, Revill A T, et al. Monitoring sublethal changes in fish physiology following exposure to a light, unweathered crude oil[J]. Aquatic Toxicology, 2018, 204: 27-45
    钟爱华, 代小新. 黄颡鱼(Pelteobagrus fulvidraco)成体造血器官头肾和体肾转录组比较研究[J]. 海洋与湖沼, 2021, 52(6): 1486-1495

    Zhong A H, Dai X X. Comparative transcriptome analysis of the head kidney and trunk kidney in adult yellow catfish (Pelteobagrus fulvidraco)[J]. Oceanologia et Limnologia Sinica, 2021, 52(6): 1486-1495(in Chinese)

    Bonatesta F, Khursigara A J, Ackerly K L, et al. Early life-stage Deepwater Horizon crude oil exposure induces latent osmoregulatory defects in larval red drum (Sciaenops ocellatus)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2022, 260: 109405
    Bonatesta F, Messerschmidt V L, Schneider L, et al. Acute exposure of early-life stage zebrafish (Danio rerio) to Deepwater Horizon crude oil impairs glomerular filtration and renal fluid clearance capacity[J]. Environmental Science and Pollution Research International, 2023, 30(8): 21990-21999
    Bonatesta F, Emadi C, Price E R, et al. The developing zebrafish kidney is impaired by deepwater horizon crude oil early-life stage exposure: A molecular to whole-organism perspective[J]. Science of the Total Environment, 2022, 808: 151988
    Reimschuessel R. A fish model of renal regeneration and development[J]. ILAR Journal, 2001, 42(4): 285-291
    Recabarren-Villalón T, Ronda A C, Girones L, et al. Can environmental factors increase oxidative responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs)?[J]. Chemosphere, 2024, 355: 141793
    Alloy M, Baxter D, Stieglitz J, et al. Ultraviolet radiation enhances the toxicity of deepwater horizon oil to mahi-mahi (Coryphaena hippurus) embryos[J]. Environmental Science & Technology, 2016, 50(4): 2011-2017
    Sørhus E, Donald C E, Nakken C L, et al. Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of Atlantic haddock (Melanogrammus aeglefinus)[J]. Science of the Total Environment, 2023, 859(Pt 1): 160080
    Lima B D, Martins L L, de Souza E S, et al. Monitoring chemical compositional changes of simulated spilled Brazilian oils under tropical climate conditions by multiple analytical techniques[J]. Marine Pollution Bulletin, 2021, 164: 111985
    Ackerly K L, Esbaugh A J. The effects of temperature on oil-induced respiratory impairment in red drum (Sciaenops ocellatus)[J]. Aquatic Toxicology, 2021, 233: 105773
    Li A J, Leung P T, Bao V W, et al. Temperature-dependent physiological and biochemical responses of the marine medaka Oryzias melastigma with consideration of both low and high thermal extremes[J]. Journal of Thermal Biology, 2015, 54: 98-105
    Perrichon P, Mager E M, Pasparakis C, et al. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi-mahi, Coryphaena hippurus[J]. PLoS One, 2018, 13(10): e0203949
    Simning D, Sepulveda M, De Guise S, et al. The combined effects of salinity, hypoxia, and oil exposure on survival and gene expression in developing sheepshead minnows, Cyprinodon variegatus[J]. Aquatic Toxicology, 2019, 214: 105234
    Ackerly K L, Esbaugh A J. The additive effects of oil exposure and hypoxia on aerobic performance in red drum (Sciaenops ocellatus)[J]. Science of the Total Environment, 2020, 737: 140174
  • 加载中
计量
  • 文章访问数:  312
  • HTML全文浏览数:  312
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-23
徐侨悦, 李西山, 熊德琪. 溢油污染对硬骨鱼类毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001
引用本文: 徐侨悦, 李西山, 熊德琪. 溢油污染对硬骨鱼类毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001
XU Qiaoyue, LI Xishan, XIONG Deqi. Research Progress on Toxic Effects of Oil Spill Pollution in the Teleost Fish[J]. Asian journal of ecotoxicology, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001
Citation: XU Qiaoyue, LI Xishan, XIONG Deqi. Research Progress on Toxic Effects of Oil Spill Pollution in the Teleost Fish[J]. Asian journal of ecotoxicology, 2024, 19(6): 178-189. doi: 10.7524/AJE.1673-5897.20240323001

溢油污染对硬骨鱼类毒性效应的研究进展

    通讯作者: 熊德琪(1967-),男,博士,教授,主要研究方向为海洋溢油等污染物环境行为与生态效应。E-mail:xiongdq@dlmu.edu.cn
    作者简介: 徐侨悦(1996—),女,博士研究生,研究方向为环境毒理学,E-mail:xu_zga@163.com
  • 大连海事大学环境科学与工程学院, 大连 116026
基金项目:

国家重点研发计划项目(2023YFC3108303);国家自然青年科学基金项目(42206158);国家自然科学基金面上项目(42076167)

摘要: 综述并分析了国内外溢油污染对硬骨鱼类的毒性效应的研究现状。多环芳烃(polycyclic aromatic hydrocarbons, PAHs)作为溢油污染中危害水生生物的主要致毒组分,能够通过多种暴露途径对硬骨鱼类造成不良影响,且主要通过氧化应激、胚胎发育毒性、神经毒性、心脏毒性、肝脏和肾脏毒性等方式对机体产生组织结构损伤、器官功能障碍等损害。本文旨在提出当前研究中尚未解决的相关问题,为未来全面解析溢油污染造成的生物毒性机制和评估生态风险提供基础理论依据。

English Abstract

参考文献 (92)

返回顶部

目录

/

返回文章
返回