杨鸢劼. 鱼类作为实验动物在环境毒理学研究中的应用[J]. 水产科技情报, 2010, 37(4): 187-190 Yang Y J. Application of fish in environmental toxicology as experimental animal[J]. Fisheries Science & Technology Information, 2010, 37(4): 187-190(in Chinese)
Khursigara A J, Rowsey L E, Johansen J L, et al. Behavioral changes in a coastal marine fish lead to increased predation risk following oil exposure[J]. Environmental Science & Technology, 2021, 55(12): 8119-8127
Ylitalo G M, Collier T K, Anulacion B F, et al. Determining oil and dispersant exposure in sea turtles from the northern Gulf of Mexico resulting from the Deepwater Horizon Oil Spill[J]. Endangered Species Research, 2017, 33: 9-24
Di Toro D M, McGrath J A, Hansen D J. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue[J]. Environmental Toxicology and Chemistry, 2000, 19(8): 1951-1970
高振会, 杨建强, 崔文林, 等. 海洋溢油对环境与生态损害评估技术及应用[M]. 北京: 海洋出版社, 2005: 6-16
Zhang R J, Han M W, Yu K F, et al. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: A case study in spring-summer[J]. Journal of Hazardous Materials, 2021, 412: 125214
Baars B J. The wreckage of the oil tanker 'Erika’: Human health risk assessment of beach cleaning, sunbathing and swimming[J]. Toxicology Letters, 2002, 128(1/2/3): 55-68
González J J, Viñas L, Franco M A, et al. Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige Oil Spill[J]. Marine Pollution Bulletin, 2006, 53(5/6/7): 250-259
Laffon B, Rábade T, Pásaro E, et al. Monitoring of the impact of Prestige Oil Spill on Mytilus galloprovincialis from Galician coast[J]. Environment International, 2006, 32(3): 342-348
Zhang C C, Li Y L, Wang C L, et al. Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: Bioaccumulation and human health risk assessment[J]. Marine Pollution Bulletin, 2020, 153: 110995
丁家琪, 罗丽娟, 栾天罡. 海洋多环芳烃及其衍生物的污染特征和来源分析[J]. 环境化学, 2023, 42(3): 893-903 Ding J Q, Luo L J, Luan T G. Characteristics and source analysis of polycyclic aromatic hydrocarbons and their derivatives in marine environment[J]. Environmental Chemistry, 2023, 42(3): 893-903(in Chinese)
Oliva A L, La Colla N S, Arias A H, et al. Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary[J]. Environmental Science and Pollution Research International, 2017, 24(23): 18979-18990
Zhang J C, Zhang X R, Hu T, et al. Polycyclic aromatic hydrocarbons (PAHs) and antibiotics in oil-contaminated aquaculture areas: Bioaccumulation, influencing factors, and human health risks[J]. Journal of Hazardous Materials, 2022, 437: 129365
张文博, 刘宾绪, 江涛, 等. 环渤海渔港沉积物多环芳烃的污染特征和生态风险评价[J]. 环境化学, 2022, 41(2): 561-571 Zhang W B, Liu B X, Jiang T, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from fishing ports along the coast of Bohai Sea[J]. Environmental Chemistry, 2022, 41(2): 561-571(in Chinese)
Romero I C, Sutton T, Carr B, et al. Decadal assessment of polycyclic aromatic hydrocarbons in mesopelagic fishes from the GulfMexico reveals exposure to oil-derived sources[J]. Environmental Science & Technology, 2018, 52(19): 10985-10996
Bilbao D, De Miguel-Jiménez L, Igartua A, et al. Chemical characterization of oil and water accommodated fraction (WAF) at different temperatures[J]. Results in Engineering, 2022, 14: 100433
Nayak S, Dash S N, Pati S S, et al. Lipid peroxidation and antioxidant levels in Anabas testudineus (Bloch) under naphthalene (PAH) stress[J]. Aquaculture Research, 2021, 52(11): 5739-5749
Incardona J P, Carls M G, Day H L, et al. Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering[J]. Environmental Science & Technology, 2009, 43(1): 201-207
齐晓宝, 吴健, 王敏, 等. 溢油污染滩涂水体中多环芳烃组成分布及风险[J]. 环境科学与技术, 2017, 40(3): 172-177 Qi X B, Wu J, Wang M, et al. Composition distribution and ecological risk assessment of PAHs in water from oil spill to tidal marshes[J]. Environmental Science & Technology, 2017, 40(3): 172-177(in Chinese)
Xu E G, Khursigara A J, Li S Y, et al. mRNA-miRNA-seq reveals neuro-cardio mechanisms of crude oil toxicity in red drum (Sciaenops ocellatus)[J]. Environmental Science & Technology, 2019, 53(6): 3296-3305
Cherr G N, Fairbairn E, Whitehead A. Impacts of petroleum-derived pollutants on fish development[J]. Annual Review of Animal Biosciences, 2017, 5: 185-203
Mu J L, Wang J Y, Jin F, et al. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma)[J]. Marine Pollution Bulletin, 2014, 85(2): 505-515
Incardona J P, Collier T K, Scholz N L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons[J]. Toxicology and Applied Pharmacology, 2004, 196(2): 191-205
Incardona J P, Day H L, Collier T K, et al. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism[J]. Toxicology and Applied Pharmacology, 2006, 217(3): 308-321
Incardona J P, Linbo T L, Scholz N L. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development[J]. Toxicology and Applied Pharmacology, 2011, 257(2): 242-249
Sathikumaran R, Madhuvandhi J, Priya K K, et al. Evaluation of benzoa] pyrene-induced toxicity in the estuarine thornfish Therapon jarbua[J]. Toxicology Reports, 2022, 9: 720-727
Rodgers M L, Sherwood T A, Tarnecki A M, et al. Characterizing transcriptomic responses of southern flounder (Paralichthys lethostigma) chronically exposed to Deepwater Horizon oiled sediments[J]. Aquatic Toxicology, 2021, 230: 105716
Turner R E, Overton E B, Meyer B M, et al. Changes in the concentration and relative abundance of alkanes and PAHs from the Deepwater Horizon oiling of coastal marshes[J]. Marine Pollution Bulletin, 2014, 86(1/2): 291-297
Reddy C M, Arey J S, Seewald J S, et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon Oil Spill[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20229-20234
Esbaugh A J, Mager E M, Stieglitz J D, et al. The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages[J]. Science of the Total Environment, 2016, 543(Pt A): 644-651
Ozhan K. How weathering might intensify the toxicity of spilled crude oil in marine environments[J]. Environmental Science and Pollution Research International, 2023, 30(44): 99561-99569
Fedan J S, Thompson J A, Sager T M, et al. Toxicological effects of inhaled crude oil vapor[J]. Current Environmental Health Reports, 2024, 11(1): 18-29
Gurung S, Dubansky B, Virgen C A, et al. Effects of crude oil vapors on the cardiovascular flow of embryonic gulf killifish[J]. Science of the Total Environment, 2021, 751: 141627
Mai Y Z, Wang Y F, Geng T, et al. A systematic toxicologic study of polycyclic aromatic hydrocarbons on aquatic organisms via food-web bioaccumulation[J]. Science of the Total Environment, 2024, 929: 172362
田丽娜, 杨金生, 周佑霖, 等. 原油对潮间带大弹涂鱼(Boleophthalmus pectinirostris)抗氧化酶活性影响的初步探究[J]. 海洋环境科学, 2022, 41(1): 135-141 Tian L N, Yang J S, Zhou Y L, et al. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Marine Environmental Science, 2022, 41(1): 135-141(in Chinese)
Pasparakis C, Mager E M, Stieglitz J D, et al. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus)[J]. Aquatic Toxicology, 2016, 181: 113-123
薄军, 吴世军, 李裕红, 等. 苯并[a]芘(BaP)对真鲷细胞色素P450和芳香烃受体基因表达的影响[J]. 中山大学学报(自然科学版), 2010, 49(3): 93-97Bo J, Wu S J, Li Y H, et al. The effects of benzo[a]pyrene (BaP) exposure on the CYP1A1 mRNA and AhR2 mRNA expression of red seabream (Pagrus major)[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(3): 93-97(in Chinese)
孙文静, 王晓艳, 祁鹏志, 等. 苯并[a]芘(BaP)对褐菖鲉(Sebasticus marmoratus)肝CYP1A1酶活性、基因表达及蛋白表达的影响[J]. 海洋与湖沼, 2018, 49(4): 897-903 Sun W J, Wang X Y, Qi P Z, et al. Effects of benzo[a] pyrene on EROD activity, mRNA expression, and protein expression of CYP1A1 in the liver of Sebasticus marmoratus[J]. Oceanologia et Limnologia Sinica, 2018, 49(4): 897-903(in Chinese)
Mu J L, Jin F, Ma X D, et al. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma)[J]. Environmental Toxicology and Chemistry, 2014, 33(11): 2576-2583
Yan M, Leung P T, Ip J C, et al. Developmental toxicity and molecular responses of marine medaka (Oryzias melastigma) embryos to ciguatoxin P-CTX-1 exposure[J]. Aquatic Toxicology, 2017, 185: 149-159
Adeyemo O K, Kroll K J, Denslow N D. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos[J]. Aquatic Toxicology, 2015, 168: 60-71
Ni X M, Shen Y J. Transgenerational effects of hexavalent chromium on marine medaka (Oryzias melastigma) reveal complex transgenerational adaptation in offspring[J]. Biomolecules, 2021, 11(2): 138
Khursigara A J, Perrichon P, Martinez Bautista N, et al. Cardiac function and survival are affected by crude oil in larval red drum, Sciaenops ocellatus[J]. Science of the Total Environment, 2017, 579: 797-804
Frantzen M, Falk-Petersen I B, Nahrgang J, et al. Toxicity of crude oil and pyrene to the embryos of beach spawning capelin (Mallotus villosus)[J]. Aquatic Toxicology, 2012, 108: 42-52
Carls M G, Rice S D, Hose J E. Sensitivity of fish embryos to weathered crude oil: Part I. low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi)[J]. Environmental Toxicology and Chemistry, 1999, 18(3): 481-493
Hansen B H, Arukwe A, Knutsen H M, et al. Effects of exposure timing on cyp1a expression, PAH elimination, and lipid utilization in lumpfish embryos exposed to produced water[J]. Environmental Science & Technology, 2023, 57(20): 7666-7674
Li X S, Xiong D Q, Ding G H, et al. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish[J]. Chemosphere, 2019, 235: 423-433
李西山, 姜曦, 丁光辉, 等. 阿曼原油和溢油分散剂对斑马鱼(Danio rerio)胚胎形态发育的毒性效应[J]. 生态毒理学报, 2017, 12(6): 281-290 Li X S, Jiang X, Ding G H, et al. Morphological and developmental toxicity of Oman crude oil and dispersant to zebrafish (Danio rerio) embryos[J]. Asian Journal of Ecotoxicology, 2017, 12(6): 281-290(in Chinese)
Sørhus E, Donald C E, da Silva D, et al. Untangling mechanisms of crude oil toxicity: Linking gene expression, morphology and PAHs at two developmental stages in a cold-water fish[J]. Science of the Total Environment, 2021, 757: 143896
Gao D X, Wu M F, Wang C G, et al. Chronic exposure to low benzo[a] pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2015, 167: 200-208
Khursigara A J, Ackerly K L, Esbaugh A J. Pyrene drives reduced brain size during early life exposure in an estuarine fish, the red drum (Sciaenops ocellatus)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 259: 109397
Nayak S, Patnaik L. Acetylcholinesterase, as a potential biomarker of naphthalene toxicity in different tissues of freshwater teleost, Anabas testudineus[J]. Journal of Environmental Engineering and Landscape Management, 2021, 29(4): 403-409
Knecht A L, Truong L, Simonich M T, et al. Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish[J]. Neurotoxicology and Teratology, 2017, 59: 27-34
Xu E G, Mager E M, Grosell M, et al. Time- and oil-dependent transcriptomic and physiological responses to deepwater horizon oil in mahi-mahi (Coryphaena hippurus) embryos and larvae[J]. Environmental Science & Technology, 2016, 50(14): 7842-7851
Gilsbach R, Schwaderer M, Preissl S, et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo[J]. Nature Communications, 2018, 9(1): 391
Incardona J P, Gardner L D, Linbo T L, et al. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): E1510-E1518
Huang Y, Wang Z Q, Peng Y Y, et al. Carboxin can induce cardiotoxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2022, 233: 113318
Zheng Y Q, Li Y J, Yue Z H, et al. Teratogenic effects of environmentally relevant concentrations of phenanthrene on the early development of marine medaka (Oryzia melastigma)[J]. Chemosphere, 2020, 254: 126900
Brette F, Shiels H A, Galli G L, et al. A novel cardiotoxic mechanism for a pervasive global pollutant[J]. Scientific Reports, 2017, 7: 41476
Incardona J P. Molecular mechanisms of crude oil developmental toxicity in fish[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(1): 19-32
Carney S A, Chen J, Burns C G, et al. Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish[J]. Molecular Pharmacology, 2006, 70(2): 549-561
Brette F, Machado B, Cros C, et al. Crude oil impairs cardiac excitation-contraction coupling in fish[J]. Science, 2014, 343(6172): 772-776
Córdova-de la Cruz S E, Martínez-Bautista G, Peña-Marín E S, et al. Morphological and cardiac alterations after crude oil exposure in the early-life stages of the tropical gar (Atractosteus tropicus)[J]. Environmental Science and Pollution Research International, 2022, 29(15): 22281-22292
Incardona J P, Carls M G, Holland L, et al. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring[J]. Scientific Reports, 2015, 5: 13499
钟林燕, 谢勇平, 赖静萍, 等. 3, 4-苯并芘暴露对食蚊鱼生长发育的毒性影响[J]. 江西农业学报, 2014, 26(4): 94-97 Zhong L Y, Xie Y P, Lai J P, et al. Toxic effects of 3, 4-benzopyrene exposure on growth and development of mosquitofish[J]. Acta Agriculturae Jiangxi, 2014, 26(4): 94-97(in Chinese)
Peng X D, Sun X X, Yu M, et al. Chronic exposure to environmental concentrations of phenanthrene impairs zebrafish reproduction[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109376
Chen Y, Zhang Y, Yu Z N, et al. Early-life phenanthrene exposure inhibits reproductive ability in adult zebrafish and the mechanism of action[J]. Chemosphere, 2021, 272: 129635
Sun L B, Zuo Z H, Chen M, et al. Reproductive and transgenerational toxicities of phenanthrene on female marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2015, 162: 109-116
Bautista N M, Crespel A, M Bautista G, et al. Dietary crude oil exposure during sex differentiation skewed adult sex ratio towards males in the zebrafish[J]. Science of the Total Environment, 2023, 892: 164449
Özkan-Kotiloǧlu S, Arslan P, Akca G, et al. Are BPA-free plastics safe for aquatic life? - Fluorene-9-bisphenol induced thyroid-disrupting effects and histopathological alterations in adult zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2022, 260: 109419
Zha J M, Hong X S, Rao H O, et al. Benzo(a)pyrene-induced a mitochondria-independent apoptosis of liver in juvenile Chinese rare minnows (Gobiocypris rarus)[J]. Environmental Pollution, 2017, 231: 191-199
Baumann P C, Harshbarger J C. Long term trends in liver neoplasm epizootics of brown bullhead in the Black River, Ohio[J]. Environmental Monitoring and Assessment, 1998, 53(1): 213-223
Lee E H, Kim M, Moon Y S, et al. Adverse effects and immune dysfunction in response to oral administration of weathered Iranian heavy crude oil in the rockfish Sebastes schlegeli[J]. Aquatic Toxicology, 2018, 200: 127-135
穆景利, 王新红, 林建清, 等. 苯并[a]芘对黑鲷肝脏GST活性的影响及其与肝脏代谢酶和胆汁代谢产物之间的变化关系[J]. 生态毒理学报, 2009, 4(4): 516-523 Mu J L, Wang X H, Lin J Q, et al. Effects of benzo[a]pyrene exposure on hepatic GST activity in black porgy(Sparus macrocephalus)and variation relationships with hepatic metabolic enzymes and biliary metabolites[J]. Asian Journal of Ecotoxicology, 2009, 4(4): 516-523(in Chinese)
Sherwood T A, Rodgers M L, Tarnecki A M, et al. Characterization of the differential expressed genes and transcriptomic pathway analysis in the liver of sub-adult red drum (Sciaenops ocellatus) exposed to Deepwater Horizon chemically dispersed oil[J]. Ecotoxicology and Environmental Safety, 2021, 214: 112098
Bayha K M, Ortell N, Ryan C N, et al. Crude oil impairs immune function and increases susceptibility to pathogenic bacteria in southern flounder[J]. PLoS One, 2017, 12(5): e0176559
Olivares-Rubio H F, Salazar-Coria L, Romero-López J P, et al. Fatty acid metabolism and brain mitochondrial performance of juvenile Niletilapia (Oreochromis niloticus) exposed to the water-accommodated fraction ofMaya crude oil[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110624
Hook S E, Mondon J, Revill A T, et al. Monitoring sublethal changes in fish physiology following exposure to a light, unweathered crude oil[J]. Aquatic Toxicology, 2018, 204: 27-45
钟爱华, 代小新. 黄颡鱼(Pelteobagrus fulvidraco)成体造血器官头肾和体肾转录组比较研究[J]. 海洋与湖沼, 2021, 52(6): 1486-1495 Zhong A H, Dai X X. Comparative transcriptome analysis of the head kidney and trunk kidney in adult yellow catfish (Pelteobagrus fulvidraco)[J]. Oceanologia et Limnologia Sinica, 2021, 52(6): 1486-1495(in Chinese)
Bonatesta F, Khursigara A J, Ackerly K L, et al. Early life-stage Deepwater Horizon crude oil exposure induces latent osmoregulatory defects in larval red drum (Sciaenops ocellatus)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2022, 260: 109405
Bonatesta F, Messerschmidt V L, Schneider L, et al. Acute exposure of early-life stage zebrafish (Danio rerio) to Deepwater Horizon crude oil impairs glomerular filtration and renal fluid clearance capacity[J]. Environmental Science and Pollution Research International, 2023, 30(8): 21990-21999
Bonatesta F, Emadi C, Price E R, et al. The developing zebrafish kidney is impaired by deepwater horizon crude oil early-life stage exposure: A molecular to whole-organism perspective[J]. Science of the Total Environment, 2022, 808: 151988
Reimschuessel R. A fish model of renal regeneration and development[J]. ILAR Journal, 2001, 42(4): 285-291
Recabarren-Villalón T, Ronda A C, Girones L, et al. Can environmental factors increase oxidative responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs)?[J]. Chemosphere, 2024, 355: 141793
Alloy M, Baxter D, Stieglitz J, et al. Ultraviolet radiation enhances the toxicity of deepwater horizon oil to mahi-mahi (Coryphaena hippurus) embryos[J]. Environmental Science & Technology, 2016, 50(4): 2011-2017
Sørhus E, Donald C E, Nakken C L, et al. Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of Atlantic haddock (Melanogrammus aeglefinus)[J]. Science of the Total Environment, 2023, 859(Pt 1): 160080
Lima B D, Martins L L, de Souza E S, et al. Monitoring chemical compositional changes of simulated spilled Brazilian oils under tropical climate conditions by multiple analytical techniques[J]. Marine Pollution Bulletin, 2021, 164: 111985
Ackerly K L, Esbaugh A J. The effects of temperature on oil-induced respiratory impairment in red drum (Sciaenops ocellatus)[J]. Aquatic Toxicology, 2021, 233: 105773
Li A J, Leung P T, Bao V W, et al. Temperature-dependent physiological and biochemical responses of the marine medaka Oryzias melastigma with consideration of both low and high thermal extremes[J]. Journal of Thermal Biology, 2015, 54: 98-105
Perrichon P, Mager E M, Pasparakis C, et al. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi-mahi, Coryphaena hippurus[J]. PLoS One, 2018, 13(10): e0203949
Simning D, Sepulveda M, De Guise S, et al. The combined effects of salinity, hypoxia, and oil exposure on survival and gene expression in developing sheepshead minnows, Cyprinodon variegatus[J]. Aquatic Toxicology, 2019, 214: 105234
Ackerly K L, Esbaugh A J. The additive effects of oil exposure and hypoxia on aerobic performance in red drum (Sciaenops ocellatus)[J]. Science of the Total Environment, 2020, 737: 140174