非靶向筛查在水环境研究中的应用——基于Web of Science文献计量分析
Application of Non-target Screening in Water Environment Research: A Bibliometric Analysis Based on Web of Science
-
摘要: 非靶向筛查(non-target screening, NTS)包括色谱法、质谱法、光谱法等,具有无差别筛选、质量精度高、重现性好以及定性分析能力优异等特点,常用于环境中各类污染物质的识别和定性分析。为深入了解NTS在水环境研究中的最新研究进展、研究热点及趋势,客观反映国家、机构及个人在该领域的贡献,本文根据Web of Science核心数据库所提供的数据,利用Citespace、HistCite Pro和VOSviewer可视化分析软件对2000—2024年间NTS在水环境中应用研究的相关文献进行计量分析。其结果表明美国(1 212篇)、中国科学院(112篇)与葡萄牙阿威罗大学(112篇)及意大利的Benelli Giovanni(45篇)是在该领域发文量最多的国家、机构和个人;瑞士的Hollender Juliane首次提出了NTS化合物鉴定的置信度分级标准,是在该领域最具代表性和权威性的研究者。而将NTS用于水环境中新污染物及其代谢物和代谢途径的识别,以及水环境生物毒性和生物蓄积性的风险评价正是当下的研究热点,检测结果的数据共享也将是一种趋势。
-
关键词:
- 非靶向 /
- 水环境 /
- Citespace /
- HistCite Pro /
- 研究热点
Abstract: Non-target screening (NTS), including chromatography, mass spectrometry, and spectroscopy, is commonly used for the identification, characterization, and quantitative analysis of various types of pollutants in the environment because of its characteristics of non-discriminatory screening, high qualitative accuracy, good reproduci-bility, and excellent qualitative analytical capability. In order to deeply understand the latest research progress, hotspots and trends in the application of NTS in the water environment, and to objectively reflect the contributions of countries, institutions and individuals in this field, this paper is based on the core database of Web of Science. In this paper, based on the data provided by the core database of Web of Science, the related literature on the research of NTS application in water environment from 2000 to 2024 were analyzed econometrically by using Citespace, HistCite Pro and VOSviewer visual analysis software. The results showed that the United States (1 212 articles), the Chinese Academy of Sciences in China (112 articles) and the University of Aveiro in Portugal (112 articles) and Benelli Giovanni (45 articles) from Italy are the countries, institutions and individuals with the largest number of publications in the field; however, Hollender Juliane of Switzerland first proposed the confidence grading standard for the identification of NTS compounds, which is the most representative and authoritative researcher in this field. The application of NTS to the identification of new pollutants, their metabolites and metabolic pathways in the aquatic environment as well as for the risk evaluation of biotoxicity and bioaccumulation in water environmental organisms is a hot research topic nowadays, and the data sharing of the test results will also be a trend.-
Key words:
- non-target /
- aqueous environment /
- Citespace /
- HistCite Pro /
- research hotspots
-
-
Lei P, Shrestha R K, Zhu B, et al. A bibliometric analysis on nonpoint source pollution: Current status, development, and future[J]. International Journal of Environmental Research and Public Health, 2021, 18(15): 7723 Morin-Crini N, Lichtfouse E, Liu G R, et al. Worldwide cases of water pollution by emerging contaminants: A review[J]. Environmental Chemistry Letters, 2022, 20(4): 2311-2338 穆哓茜, 曹艺璇, 吕琛山, 等. 基于HRMS的海河地表水有机污染物的非靶标筛查及生态风险评估[J]. 中国法医学杂志, 2023, 38(5): 547-552 Mu X Q, Cao Y X, Lyu C S, et al. Nontarget screening and risk assessment of organic pollutants in surface water of Hai River based on high resolution mass spectrometry[J]. Chinese Journal of Forensic Medicine, 2023, 38(5): 547-552(in Chinese)
Verberkmoes N C, Russell A L, Shah M, et al. Shotgunmetaproteomics of the human distal gut microbiota[J]. The ISME Journal, 2009, 3(2): 179-189 Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor[J]. Plant Journal, 2005, 42(2): 218-235 Suhre K, Shin S Y, Petersen A K, et al. Human metabolic individuality in biomedical and pharmaceutical research[J]. Nature, 2011, 477(7362): 54-60 Krauss M, Singer H, Hollender J. LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns[J]. Analytical and Bioanalytical Chemistry, 2010, 397(3): 943-951 Schymanski E L, Jeon J, Gulde R, et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence[J]. Environmental Science & Technology, 2014, 48(4): 2097-2098 Oliveira M M, Cruz-Tirado J P, Barbin D F. Nontargeted analytical methods as a powerful tool for the authentication of spices and herbs: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(3): 670-689 Wu T F, Ma Z G, Zhang Y, et al. Simultaneous quantitative analysis of 11 constituents in Viticis Fructus by HPLC-HRMS and HPLC-DAD combined with chemometric methods[J]. Phytochemical Analysis, 2023, 34(2): 163-174 郑耀林, 林秋凤, 杨乐, 等. 液相色谱-高分辨质谱技术在兽药残留检测中的研究进展[J]. 食品科学, 2023, 44(3): 359-365 Zheng Y L, Lin Q F, Yang L, et al. Progress on liquid chromatography-high resolution mass spectrometry in the determination of veterinary drug residues: A review[J]. Food Science, 2023, 44(3): 359-365(in Chinese)
Li C, Chu S Y, Tan S Y, et al. Towards higher sensitivity of mass spectrometry: A perspective from the mass analyzers[J]. Frontiers in Chemistry, 2021, 9: 813359 Guo X, Lin H, Xu S P, et al. Recent advances in spectroscopic techniques for the analysis of microplastics in food[J]. Journal of Agricultural and Food Chemistry, 2022, 70(5): 1410-1422 Liu H, Wang R, Zhao B, et al. Assessment for the data processing performance of non-target screening analysis based on high-resolution mass spectrometry[J]. Science of the Total Environment, 2024, 908: 167967 Jia W H, Liu H, Ma Y N, et al. Reproducibility in nontarget screening (NTS) of environmental emerging contaminants: Assessing different HLB SPE cartridges and instruments[J].Science of the Total Environment, 2024, 912: 168971 Xia D, Liu L J, Zhao B, et al. Application of nontarget high-resolution mass spectrometry fingerprints for qualitative and quantitative source apportionment: A real case study[J]. Environmental Science & Technology, 2024, 58(1): 727-738 Wang R, Yan Y N, Liu H, et al. Integrating data dependent and data independent non-target screening methods for monitoring emerging contaminants in the Pearl River of Guangdong Province, China[J]. Science of the Total Environment, 2023, 891: 164445 Xia D, Liu H, Lu Y, et al. Utility of a non-target screening method to explore the chlorination of similar sulfonamide antibiotics: Pathways and NCl intermediates[J]. Science of the Total Environment, 2023, 858(Pt 3): 160042 芦晓, 刘国庆. HistCite Pro在文献统计分析中的运用——以国际“宽恕”研究为例[J]. 内蒙古科技与经济, 2021(10): 132-134, 137 侯剑华, 胡志刚. CiteSpace软件应用研究的回顾与展望[J]. 现代情报, 2013, 33(4): 99-103 Hou J H, Hu Z G. Review on the application of CiteSpace at home and abroad[J]. Journal of Modern Information, 2013, 33(4): 99-103(in Chinese)
Cisneros L, Ibanescu M, Keen C, et al. Bibliometric study of family business succession between 1939 and 2017: Mapping and analyzing authors’ networks[J]. Scientometrics, 2018, 117(2): 919-951 Juliane H, Schymanski Emma L, Lutz A, et al. NORMAN guidance on suspect and non-target screening in environmental monitoring[J]. Environmental Sciences Europe, 2023, 35(1): 1-61 Meyer C, Stravs M A, Hollender J. How wastewater reflects human metabolism—Suspect screening of pharmaceutical metabolites in wastewater influent[J]. Environmental Science & Technology, 2024, 58(22): 9828-9839 Hollender J, van Bavel B, Dulio V, et al. High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management[J]. Environmental Sciences Europe, 2019, 31(1): 42 van Eck N J, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer[J]. Scientometrics, 2017, 111(2): 1053-1070 Zhang Q, Xu H, Song N H, et al. New insight into fate and transport of organic compounds from pollution sources to aquatic environment using non-targeted screening: A wastewater treatment plant case study[J]. Science of the Total Environment, 2023, 863: 161031 钱慧敏, 刘艳娜, 姚林林, 等. 非靶标技术在新污染物识别中的应用[J]. 环境化学, 2024, 43(2): 363-376 Qian H M, Liu Y N, Yao L L, et al. Recent advances in nontarget discovery of emerging pollutants in the environment[J]. Environmental Chemistry, 2024, 43(2): 363-376(in Chinese)
Yang Y J, Yang L L, Zheng M H, et al. Data acquisition methods for non-targeted screening in environmental analysis[J].TrAC Trends in Analytical Chemistry, 2023, 160: 116966 Hu L X, Olaitan O J, Li Z, et al. What is in Nigerian waters? Target and non-target screening analysis for organic chemicals[J]. Chemosphere, 2021, 284: 131546 Wang X B, Yu N Y, Yang J P, et al. Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS[J]. Environment International, 2020, 137: 105599 Huang Y H, You Y N, Wu M M, et al. Chemical characterization and source attribution of organic pollutants in industrial wastewaters from a Chinese chemical industrial park[J]. Environmental Research, 2023, 229: 115980 Zhao S K, Chao Q, Yang L, et al. A review on application of acoustic emission in coal—Analysis based on CiteSpace knowledge network[J]. Processes, 2022, 10(11): 2397 Morin-Crini N, Lichtfouse E, Fourmentin M, et al. Removal of emerging contaminants from wastewater using advanced treatments. A review[J]. Environmental Chemistry Letters, 2022, 20(2): 1333-1375 Tang F H M, Lenzen M, McBratney A, et al. Risk of pesticide pollution at the global scale[J]. Nature Geoscience, 2021, 14(4): 206-210 Wilkinson J L, Boxall A B A, Kolpin D W, et al. Pharmaceutical pollution of the world’s rivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2113947119 Matey J M, Zapata F, Menéndez-Quintanal L M, et al. Identification of new psychoactive substances and their metabolites using non-targeted detection with high-resolution mass spectrometry through diagnosing fragment ions/neutral loss analysis[J]. Talanta, 2023, 265: 124816 He C P, Zhao N, Hu L M, et al. Assessment of ecotoxicity effects of aspirin on non-target organism (Daphnia magna) via analysis of the responses of oxidative stress, DNA methylation-related genes expressions and life traits changes[J]. Ecotoxicology, 2023, 32(2): 137-149 Zhang T M, Dong Z H, Liu F X, et al. Non-target toxic effects of avermectin on carp spleen involve oxidative stress, inflammation, and apoptosis[J]. Pesticide Biochemistry and Physiology, 2022, 187: 105190 Sepman H, Malm L, Peets P, et al. Scientometric review: Concentration and toxicity assessment in environmental non-targeted LC/HRMS analysis[J]. Trends in Environmental Analytical Chemistry, 2023, 40: e00217 Ziarrusta H, Mijangos L, Picart-Armada S, et al. Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone[J]. Chemosphere, 2018, 211: 624-631 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253 Chen Y, Chen C M, Liu Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253(in Chinese)
Malhotra N, Chen K H, Huang J C, et al. Physiological effects of neonicotinoid insecticides on non-target aquatic animals—An updated review[J]. International Journal of Molecular Sciences, 2021, 22(17): 9591 Kiraççakali A N, Oǧuz A R. Determination of cytotoxic, genotoxic, and oxidative damage from deltamethrin on primary hepatocyte culture of Lake Van fish, Alburnus tarichi[J]. Chemistry and Ecology, 2020, 36(7): 651-662 Vitiello A, Sabbatucci M, Salzano A, et al. The importance of antibiotic treatment duration in antimicrobial resistance[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2024, 43(8): 1673-1675 张琪, 赵成, 卢晓霞, 等. 新烟碱类杀虫剂对非靶标生物毒性效应的研究进展[J]. 生态毒理学报, 2020, 15(1): 56-71 Zhang Q, Zhao C, Lu X X, et al. Advances in research on toxic effects of neonicotinoid insecticides on non-target organisms[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 56-71(in Chinese)
Li X, Ma E, Qu H. Knowledge mapping of hospitality research? A visual analysis using CiteSpace[J]. International Journal of Hospitality Management, 2017, 60: 77-93 Mao N, Zhu Y, Wang J, et al. Adaptive evolution of marine organisms: A bibliometric analysis based on CiteSpace[J]. Water, Multidisciplinary Digital Publishing Institute, 2023, 15(23): 4162 Zhong S, Chen R, Song F, et al. Knowledge mapping of carbon footprint research in a LCA perspective: A visual analysis using CiteSpace[J]. Processes, Multidisciplinary Digital Publishing Institute, 2019, 7(11): 818 Ansari I, El-Kady M M, El Din Mahmoud A, et al. Persistent pesticides: Accumulation, health risk assessment, management and remediation: An overview[J]. Desalination and Water Treatment, 2024, 317: 100274 韩明慧, 方虹霁, 王园平, 等. 新烟碱类农药污染和人体暴露及有害效应研究[J]. 上海预防医学, 2021, 33(6): 534-543 Han M H, Fang H J, Wang Y P, et al. Pollution, human exposure and harmful effects of neonicotinoid pesticides[J]. Shanghai Journal of Preventive Medicine, 2021, 33(6): 534-543(in Chinese)
周林军, 梁梦园, 范德玲, 等. 新污染物环境监测国际实践及启示[J]. 生态与农村环境学报, 2021, 37(12): 1532-1539 Zhou L J, Liang M Y, Fan D L, et al. International practices and enlightenment for environment monitoring of emerging pollutant[J]. Journal of Ecology and Rural Environment, 2021, 37(12): 1532-1539(in Chinese)
Vosough M, Schmidt T C, Renner G. Non-target screening in water analysis: Recent trends of data evaluation, quality assurance, and their future perspectives[J]. Analytical and Bioanalytical Chemistry, 2024, 416(9): 2125-2136 Eysseric E, Beaudry F, Gagnon C, et al. Non-targeted screening of trace organic contaminants in surface waters by a multi-tool approach based on combinatorial analysis of tandem mass spectra and open access databases[J]. Talanta, 2021, 230: 122293 -

计量
- 文章访问数: 427
- HTML全文浏览数: 427
- PDF下载数: 68
- 施引文献: 0