1,2-二溴-4-(1,2-二溴乙基)环己烷(TBECH)对土壤中蚯蚓(Eisenia foetida)的毒性效应

张贞莹, 温蓓, 杨恩泰, 黄红林, 彭汉勇. 1,2-二溴-4-(1,2-二溴乙基)环己烷(TBECH)对土壤中蚯蚓(Eisenia foetida)的毒性效应[J]. 生态毒理学报, 2023, 18(1): 380-393. doi: 10.7524/AJE.1673-5897.20220222002
引用本文: 张贞莹, 温蓓, 杨恩泰, 黄红林, 彭汉勇. 1,2-二溴-4-(1,2-二溴乙基)环己烷(TBECH)对土壤中蚯蚓(Eisenia foetida)的毒性效应[J]. 生态毒理学报, 2023, 18(1): 380-393. doi: 10.7524/AJE.1673-5897.20220222002
Zhang Zhenying, Wen Bei, Yang Entai, Huang Honglin, Peng Hanyong. Toxic Effects of 1,2-dibromo-4-(1,2-dibromoethyl) Cyclohexane (TBECH) on Earthworms (Eisenia foetida) in Soil[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 380-393. doi: 10.7524/AJE.1673-5897.20220222002
Citation: Zhang Zhenying, Wen Bei, Yang Entai, Huang Honglin, Peng Hanyong. Toxic Effects of 1,2-dibromo-4-(1,2-dibromoethyl) Cyclohexane (TBECH) on Earthworms (Eisenia foetida) in Soil[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 380-393. doi: 10.7524/AJE.1673-5897.20220222002

1,2-二溴-4-(1,2-二溴乙基)环己烷(TBECH)对土壤中蚯蚓(Eisenia foetida)的毒性效应

    作者简介: 张贞莹(1997—),女,硕士研究生,研究方向为污染物的生物富集和毒性效应,E-mail:zhangzhenying1997@163.com
    通讯作者: 温蓓, E-mail: bwen@rcees.ac.cn
  • 基金项目:

    国家重点研发计划场地土壤专项(2018YFC1801002);国家自然科学基金资助项目(41877479,22076213)

  • 中图分类号: X171.5

Toxic Effects of 1,2-dibromo-4-(1,2-dibromoethyl) Cyclohexane (TBECH) on Earthworms (Eisenia foetida) in Soil

    Corresponding author: Wen Bei, bwen@rcees.ac.cn
  • Fund Project:
  • 摘要: 1,2-二溴-4-(1,2-二溴乙基)环己烷(1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane, TBECH)作为一种新型溴代阻燃剂已在多种环境介质和生物体中被检出,但其毒性效应研究相当匮乏。笔者研究了赤子爱胜蚓(Eisenia fetida)对土壤中TBECH的4种异构体(α-TBECH、β-TBECH、γ-TBECH和δ-TBECH)的选择性积累,考察了TBECH对赤子爱胜蚓的生长、蚯蚓体内自由基水平、丙二醛(MDA)、磷酸化组蛋白(γ-H2AX)含量以及抗氧化酶活性的影响。结果表明,蚯蚓对TBECH的富集存在异构体选择性,γ-TBECH的生物土壤富集因子(BSAF)大于其他异构体。低浓度暴露(50~200 mg·kg-1)时,蚯蚓平均体质量、死亡率与空白组均无显著性差异,高浓度暴露(≥400 mg·kg-1)时,随暴露浓度的增加,平均体质量下降,死亡率增加。TBECH暴露过程中,蚯蚓体内MDA和γ-H2AX含量显著增加。超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)以及谷胱甘肽S转移酶(GSTs)的活性在50 mg·kg-1暴露下被显著诱导,在100~600 mg·kg-1暴露下,随暴露时间和浓度的增加而降低。采用电子自旋共振结合二级自由基捕获技术测定了蚯蚓体内自由基水平,发现TBECH暴露能够引起蚯蚓体内大量羟基自由基的产生,且羟基自由基水平与MDA含量存在显著正相关关系,表明诱导蚯蚓体内产生大量羟基自由基从而导致的氧化损伤是TBECH对蚯蚓产生毒性的重要原因。以上研究结果揭示了赤子爱胜蚓对TBECH的富集能力以及TBECH对赤子爱胜蚓的毒性效应,为TBECH的生态健康风险评估提供了依据。
  • 加载中
  • Pradhan A, Kharlyngdoh J B, Asnake S, et al. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances [J]. Aquatic Toxicology, 2013, 142-143: 63-72
    Marteinson S C, Palace V, Letcher R J, et al. Disruption of thyroxine and sex hormones by 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH) in American kestrels (Falco sparverius) and associations with reproductive and behavioral changes [J]. Environmental Research, 2017, 154: 389-397
    Howard P H, Muir D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce. Ⅲ: Byproducts, impurities, and transformation products [J]. Environmental Science & Technology, 2013, 47(10): 5259-5266
    Gauthier L T, Potter D, Hebert C E, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls [J]. Environmental Science & Technology, 2009, 43(2): 312-317
    Tomy G T, Pleskach K, Arsenault G, et al. Identilication of the novel cycloaliphatic brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in Canadian Arctic beluga (Delphinapterus leucas) [J]. Environmental Science & Technology, 2008, 42(2): 543-549
    Tao F, Abdallah M A E, Harrad S. Emerging and legacy flame retardants in UK indoor air and dust: Evidence for replacement of PBDEs by emerging flame retardants? [J]. Environmental Science & Technology, 2016, 50(23): 13052-13061
    Hong W J, Jia H L, Ding Y S, et al. Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices from an electronic waste (e-waste) recycling site in Northern China [J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 80-90
    Ruan Y F, Zhang X H, Qiu J W, et al. Stereoisomer-specific trophodynamics of the chiral brominated flame retardants HBCD and TBECH in a marine food web, with implications for human exposure [J]. Environmental Science & Technology, 2018, 52(15): 8183-8193
    Ruan Y F, Lam J C W, Zhang X H, et al. Temporal changes and stereoisomeric compositions of 1,2,5,6,9,10-hexabromocyclododecane and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in marine mammals from the South China Sea [J]. Environmental Science & Technology, 2018, 52(5): 2517-2526
    Khalaf H, Larsson A, Berg H, et al. Diastereomers of the brominated flame retardant 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane induce androgen receptor activation in the HepG2 hepatocellular carcinoma cell line and the LNCap prostate cancer cell line [J]. Environmental Health Perspectives, 2009, 117(12): 1853-1859
    Huang H L, Lv L L, Wang D, et al. Biochemical and molecular responses of maize (Zea mays L.) to 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH) diastereomers: Oxidative stress, DNA damage, antioxidant enzyme gene expression and diversity of root exudates [J]. The Science of the Total Environment, 2021, 753: 141872
    Park B J, Palace V, Wautier K, et al. Thyroid axis disruption in juvenile brown trout (Salmo trutta) exposed to the flame retardant β-tetrabromoethylcyclohexane (β-TBECH) via the diet [J]. Environmental Science & Technology, 2011, 45(18): 7923-7927
    Marteinson S C, Letcher R J, Graham L, et al. The flame retardant β-1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane: Fate, fertility, and reproductive success in American kestrels (Falco sparverius) [J]. Environmental Science & Technology, 2012, 46(15): 8440-8447
    Stojak B L, van Ginkel R A, Ivanco T L, et al. Acute β-tetrabromoethylcyclohexane (β-TBECH) treatment inhibits the electrical activity of rat Purkinje neurons [J]. Chemosphere, 2019, 231: 301-307
    Okonski K, Melymuk L, Kohoutek J, et al. Hexabromocyclododecane: Concentrations and isomer profiles from sources to environmental sinks [J]. Environmental Science and Pollution Research International, 2018, 25(36): 36624-36635
    Ruan Y F, Zhang K, Lam J C W, et al. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong [J]. Journal of Hazardous Materials, 2019, 374: 211-218
    Zhang Y Q, Lu Y L, Wang P, et al. Transport of hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China [J]. The Science of the Total Environment, 2018, 610-611: 94-100
    Zhu H K, Zhang K, Sun H W, et al. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China [J]. Environmental Pollution, 2017, 222: 338-347
    Nyholm J R, Asamoah R K, van der Wal L, et al. Accumulation of polybrominated diphenyl ethers, hexabromobenzene, and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in earthworm (Eisenia fetida). Effects of soil type and aging [J]. Environmental Science & Technology, 2010, 44(23): 9189-9194
    Wen B, Huang R X, Wang P, et al. Effect of complexation on the accumulation and elimination kinetics of cadmium and ciprofloxacin in the earthworm Eisenia fetida [J]. Environmental Science & Technology, 2011, 45(10): 4339-4345
    Du L, Li G D, Liu M M, et al. Biomarker responses in earthworms (Eisenia fetida) to soils contaminated with di-n-butyl phthalates [J]. Environmental Science and Pollution Research International, 2015, 22(6): 4660-4669
    Li Y B, Wang X, Sun Z J. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida [J]. Journal of Hazardous Materials, 2020, 393: 122384
    Wang X, Wei L, Wang Y, et al. Evaluation of development, locomotor behavior, oxidative stress, immune responses and apoptosis in developing zebrafish (Danio rerio) exposed to TBECH (tetrabromoethylcyclohexane) [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 217: 106-113
    Sun J Q, Xu Y, Zhou H B, et al. Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in dust from different indoor environments in Hangzhou, China [J]. The Science of the Total Environment, 2018, 631-632: 1212-1220
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254
    Shi H H, Wang X R, Luo Y, et al. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus [J]. Aquatic Toxicology, 2005, 74(4): 365-371
    Takeshita K, Fujii K, Anzai K, et al. In vivo monitoring of hydroxyl radical generation caused by X-ray irradiation of rats using the spin trapping/EPR technique [J]. Free Radical Biology & Medicine, 2004, 36(9): 1134-1143
    Yin Y, Jia H X, Sun Y Y, et al. Bioaccumulation and ROS generation in liver of Carassius auratus, exposed to phenanthrene [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2007, 145(2): 288-293
    Crump D, Porter E, Egloff C, et al. 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos [J]. Toxicology and Applied Pharmacology, 2014, 277(3): 279-287
    Huang H L, Guo B, Wang D, et al. Bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize (Zea mays L.): Stereoselective driving roles of plant biomacromolecules [J]. Journal of Hazardous Materials, 2022, 424(Pt C): 127610
    Yang E T, Wen B, Zhang Z Y, et al. Diastereomer-and enantiomer-selective accumulation and depuration of 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexanes (DBE-DBCHs) and 1,2,5,6-tetrabromocyclooctanes (TBCOs) in earthworms (Eisenia fetida) [J]. The Science of the Total Environment, 2022, 826: 154145
    Larsson A, Eriksson L A, Andersson P L, et al. Identification of the brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane as an androgen agonist [J]. Journal of Medicinal Chemistry, 2006, 49(25): 7366-7372
    Liu P Y, Meng T, Li Y Y, et al. Tetrabromoethylcyclohexane affects gonadal differentiation and development in the frog Pelophylax nigromaculatus [J]. Aquatic Toxicology, 2017, 192: 40-47
    Gannon A M, Nunnikhoven A, Liston V, et al. Rat strain response differences upon exposure to technical or alpha hexabromocyclododecane [J]. Food and Chemical Toxicology, 2019, 130: 284-307
    Porter E, Crump D, Egloff C, et al. Use of an avian hepatocyte assay and the avian Toxchip Polymerse chain reaction array for testing prioritization of 16 organic flame retardants [J]. Environmental Toxicology and Chemistry, 2014, 33(3): 573-582
    Yaacoub R, Saliba R, Nsouli B, et al. Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds [J]. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7082-7090
    Jackson S P. Sensing and repairing DNA double-strand breaks [J]. Carcinogenesis, 2002, 23(5): 687-696
    Park P K, Kang D H, Kwon H. BAF53 is critical for focus formation of gamma-H2AX in response to DNA damage [J]. Animal Cells and Systems, 2009, 13(4): 405-409
    MacPhail S H, Banáth J P, Yu T Y, et al. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays [J]. International Journal of Radiation Biology, 2003, 79(5): 351-358
    Treml J, Šmejkal K. Flavonoids as potent scavengers of hydroxyl radicals [J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(4): 720-738
    Nah T, Kessler S H, Daumit K E, et al. OH-initiated oxidation of sub-micron unsaturated fatty acid particles [J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18649-18663
    Rasheed Z, Alharbi A, Alrakebeh A, et al. Thymoquinone provides structural protection of human hemoglobin against oxidative damage: Biochemical studies [J]. Biochimie, 2022, 192: 102-110
    Wang X W, Fan L X, Cheng L, et al. Biodegradable nickel disulfide nanozymes with GSH-depleting function for high-efficiency photothermal-catalytic antibacterial therapy [J]. iScience, 2020, 23(7): 101281
    Yang G B, Wang D D, Phua S Z F, et al. Albumin-based therapeutics capable of glutathione consumption and hydrogen peroxide generation for synergetic chemodynamic and chemotherapy of cancer [J]. ACS Nano, 2022, 16(2): 2319-2329
    Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine [M]. Oxford: Clarcndon Press, 1985: 331-332
    Perally S, Lacourse E J, Campbell A M, et al. Heme transport and detoxification in nematodes: Subproteomics evidence of differential role of glutathione transferases [J]. Journal of Proteome Research, 2008, 7(10): 4557-4565
    Leiers B, Kampkötter A, Grevelding C G, et al. A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans [J]. Free Radical Biology & Medicine, 2003, 34(11): 1405-1415
    Dallinger R. Strategies of Metal Detoxification in Terrestrial Invertebrates [M]// Dallinger R, Rainbow P. eds. Ecotoxicology of Metals in Invertebrates. Boca Raton: Lewis Publishers, 1993: 333-358
    Shi Y J, Xu X B, Chen J, et al. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane [J]. Environmental Pollution, 2018, 232: 245-251
    Shi Y J, Xu X B, Zheng X Q, et al. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2015, 174-175: 32-38
    Gray B, Carmichael A J. Kinetics of superoxide scavenging by dismutase enzymes and Manganese mimics determined by electron spin resonance [J]. The Biochemical Journal, 1992, 281(Pt 3): 795-802
    Paes M C, Oliveira M B, Oliveira P L. Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus [J]. Archives of Insect Biochemistry and Physiology, 2001, 48(2): 63-71
    Wang M Y, Qiu S Y, Yang H Y, et al. Spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of potassium iodide and its applications to hydroxylamine-involved Fenton and Fenton-like systems [J]. Chemosphere, 2021, 270: 129448
  • 加载中
计量
  • 文章访问数:  1002
  • HTML全文浏览数:  1002
  • PDF下载数:  36
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-22

1,2-二溴-4-(1,2-二溴乙基)环己烷(TBECH)对土壤中蚯蚓(Eisenia foetida)的毒性效应

    通讯作者: 温蓓, E-mail: bwen@rcees.ac.cn
    作者简介: 张贞莹(1997—),女,硕士研究生,研究方向为污染物的生物富集和毒性效应,E-mail:zhangzhenying1997@163.com
  • 1. 中国科学院生态环境研究中心, 北京 100085;
  • 2. 中国科学院大学, 北京 100049
基金项目:

国家重点研发计划场地土壤专项(2018YFC1801002);国家自然科学基金资助项目(41877479,22076213)

摘要: 1,2-二溴-4-(1,2-二溴乙基)环己烷(1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane, TBECH)作为一种新型溴代阻燃剂已在多种环境介质和生物体中被检出,但其毒性效应研究相当匮乏。笔者研究了赤子爱胜蚓(Eisenia fetida)对土壤中TBECH的4种异构体(α-TBECH、β-TBECH、γ-TBECH和δ-TBECH)的选择性积累,考察了TBECH对赤子爱胜蚓的生长、蚯蚓体内自由基水平、丙二醛(MDA)、磷酸化组蛋白(γ-H2AX)含量以及抗氧化酶活性的影响。结果表明,蚯蚓对TBECH的富集存在异构体选择性,γ-TBECH的生物土壤富集因子(BSAF)大于其他异构体。低浓度暴露(50~200 mg·kg-1)时,蚯蚓平均体质量、死亡率与空白组均无显著性差异,高浓度暴露(≥400 mg·kg-1)时,随暴露浓度的增加,平均体质量下降,死亡率增加。TBECH暴露过程中,蚯蚓体内MDA和γ-H2AX含量显著增加。超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)以及谷胱甘肽S转移酶(GSTs)的活性在50 mg·kg-1暴露下被显著诱导,在100~600 mg·kg-1暴露下,随暴露时间和浓度的增加而降低。采用电子自旋共振结合二级自由基捕获技术测定了蚯蚓体内自由基水平,发现TBECH暴露能够引起蚯蚓体内大量羟基自由基的产生,且羟基自由基水平与MDA含量存在显著正相关关系,表明诱导蚯蚓体内产生大量羟基自由基从而导致的氧化损伤是TBECH对蚯蚓产生毒性的重要原因。以上研究结果揭示了赤子爱胜蚓对TBECH的富集能力以及TBECH对赤子爱胜蚓的毒性效应,为TBECH的生态健康风险评估提供了依据。

English Abstract

参考文献 (53)

目录

/

返回文章
返回