Pradhan A, Kharlyngdoh J B, Asnake S, et al. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances [J]. Aquatic Toxicology, 2013, 142-143: 63-72
Marteinson S C, Palace V, Letcher R J, et al. Disruption of thyroxine and sex hormones by 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH) in American kestrels (Falco sparverius) and associations with reproductive and behavioral changes [J]. Environmental Research, 2017, 154: 389-397
Howard P H, Muir D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce. Ⅲ: Byproducts, impurities, and transformation products [J]. Environmental Science & Technology, 2013, 47(10): 5259-5266
Gauthier L T, Potter D, Hebert C E, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls [J]. Environmental Science & Technology, 2009, 43(2): 312-317
Tomy G T, Pleskach K, Arsenault G, et al. Identilication of the novel cycloaliphatic brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in Canadian Arctic beluga (Delphinapterus leucas) [J]. Environmental Science & Technology, 2008, 42(2): 543-549
Tao F, Abdallah M A E, Harrad S. Emerging and legacy flame retardants in UK indoor air and dust: Evidence for replacement of PBDEs by emerging flame retardants? [J]. Environmental Science & Technology, 2016, 50(23): 13052-13061
Hong W J, Jia H L, Ding Y S, et al. Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices from an electronic waste (e-waste) recycling site in Northern China [J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 80-90
Ruan Y F, Zhang X H, Qiu J W, et al. Stereoisomer-specific trophodynamics of the chiral brominated flame retardants HBCD and TBECH in a marine food web, with implications for human exposure [J]. Environmental Science & Technology, 2018, 52(15): 8183-8193
Ruan Y F, Lam J C W, Zhang X H, et al. Temporal changes and stereoisomeric compositions of 1,2,5,6,9,10-hexabromocyclododecane and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in marine mammals from the South China Sea [J]. Environmental Science & Technology, 2018, 52(5): 2517-2526
Khalaf H, Larsson A, Berg H, et al. Diastereomers of the brominated flame retardant 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane induce androgen receptor activation in the HepG2 hepatocellular carcinoma cell line and the LNCap prostate cancer cell line [J]. Environmental Health Perspectives, 2009, 117(12): 1853-1859
Huang H L, Lv L L, Wang D, et al. Biochemical and molecular responses of maize (Zea mays L.) to 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH) diastereomers: Oxidative stress, DNA damage, antioxidant enzyme gene expression and diversity of root exudates [J]. The Science of the Total Environment, 2021, 753: 141872
Park B J, Palace V, Wautier K, et al. Thyroid axis disruption in juvenile brown trout (Salmo trutta) exposed to the flame retardant β-tetrabromoethylcyclohexane (β-TBECH) via the diet [J]. Environmental Science & Technology, 2011, 45(18): 7923-7927
Marteinson S C, Letcher R J, Graham L, et al. The flame retardant β-1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane: Fate, fertility, and reproductive success in American kestrels (Falco sparverius) [J]. Environmental Science & Technology, 2012, 46(15): 8440-8447
Stojak B L, van Ginkel R A, Ivanco T L, et al. Acute β-tetrabromoethylcyclohexane (β-TBECH) treatment inhibits the electrical activity of rat Purkinje neurons [J]. Chemosphere, 2019, 231: 301-307
Okonski K, Melymuk L, Kohoutek J, et al. Hexabromocyclododecane: Concentrations and isomer profiles from sources to environmental sinks [J]. Environmental Science and Pollution Research International, 2018, 25(36): 36624-36635
Ruan Y F, Zhang K, Lam J C W, et al. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong [J]. Journal of Hazardous Materials, 2019, 374: 211-218
Zhang Y Q, Lu Y L, Wang P, et al. Transport of hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China [J]. The Science of the Total Environment, 2018, 610-611: 94-100
Zhu H K, Zhang K, Sun H W, et al. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China [J]. Environmental Pollution, 2017, 222: 338-347
Nyholm J R, Asamoah R K, van der Wal L, et al. Accumulation of polybrominated diphenyl ethers, hexabromobenzene, and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in earthworm (Eisenia fetida). Effects of soil type and aging [J]. Environmental Science & Technology, 2010, 44(23): 9189-9194
Wen B, Huang R X, Wang P, et al. Effect of complexation on the accumulation and elimination kinetics of cadmium and ciprofloxacin in the earthworm Eisenia fetida [J]. Environmental Science & Technology, 2011, 45(10): 4339-4345
Du L, Li G D, Liu M M, et al. Biomarker responses in earthworms (Eisenia fetida) to soils contaminated with di-n-butyl phthalates [J]. Environmental Science and Pollution Research International, 2015, 22(6): 4660-4669
Li Y B, Wang X, Sun Z J. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida [J]. Journal of Hazardous Materials, 2020, 393: 122384
Wang X, Wei L, Wang Y, et al. Evaluation of development, locomotor behavior, oxidative stress, immune responses and apoptosis in developing zebrafish (Danio rerio) exposed to TBECH (tetrabromoethylcyclohexane) [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 217: 106-113
Sun J Q, Xu Y, Zhou H B, et al. Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in dust from different indoor environments in Hangzhou, China [J]. The Science of the Total Environment, 2018, 631-632: 1212-1220
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254
Shi H H, Wang X R, Luo Y, et al. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus [J]. Aquatic Toxicology, 2005, 74(4): 365-371
Takeshita K, Fujii K, Anzai K, et al. In vivo monitoring of hydroxyl radical generation caused by X-ray irradiation of rats using the spin trapping/EPR technique [J]. Free Radical Biology & Medicine, 2004, 36(9): 1134-1143
Yin Y, Jia H X, Sun Y Y, et al. Bioaccumulation and ROS generation in liver of Carassius auratus, exposed to phenanthrene [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2007, 145(2): 288-293
Crump D, Porter E, Egloff C, et al. 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos [J]. Toxicology and Applied Pharmacology, 2014, 277(3): 279-287
Huang H L, Guo B, Wang D, et al. Bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize (Zea mays L.): Stereoselective driving roles of plant biomacromolecules [J]. Journal of Hazardous Materials, 2022, 424(Pt C): 127610
Yang E T, Wen B, Zhang Z Y, et al. Diastereomer-and enantiomer-selective accumulation and depuration of 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexanes (DBE-DBCHs) and 1,2,5,6-tetrabromocyclooctanes (TBCOs) in earthworms (Eisenia fetida) [J]. The Science of the Total Environment, 2022, 826: 154145
Larsson A, Eriksson L A, Andersson P L, et al. Identification of the brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane as an androgen agonist [J]. Journal of Medicinal Chemistry, 2006, 49(25): 7366-7372
Liu P Y, Meng T, Li Y Y, et al. Tetrabromoethylcyclohexane affects gonadal differentiation and development in the frog Pelophylax nigromaculatus [J]. Aquatic Toxicology, 2017, 192: 40-47
Gannon A M, Nunnikhoven A, Liston V, et al. Rat strain response differences upon exposure to technical or alpha hexabromocyclododecane [J]. Food and Chemical Toxicology, 2019, 130: 284-307
Porter E, Crump D, Egloff C, et al. Use of an avian hepatocyte assay and the avian Toxchip Polymerse chain reaction array for testing prioritization of 16 organic flame retardants [J]. Environmental Toxicology and Chemistry, 2014, 33(3): 573-582
Yaacoub R, Saliba R, Nsouli B, et al. Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds [J]. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7082-7090
Jackson S P. Sensing and repairing DNA double-strand breaks [J]. Carcinogenesis, 2002, 23(5): 687-696
Park P K, Kang D H, Kwon H. BAF53 is critical for focus formation of gamma-H2AX in response to DNA damage [J]. Animal Cells and Systems, 2009, 13(4): 405-409
MacPhail S H, Banáth J P, Yu T Y, et al. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays [J]. International Journal of Radiation Biology, 2003, 79(5): 351-358
Treml J, Šmejkal K. Flavonoids as potent scavengers of hydroxyl radicals [J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(4): 720-738
Nah T, Kessler S H, Daumit K E, et al. OH-initiated oxidation of sub-micron unsaturated fatty acid particles [J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18649-18663
Rasheed Z, Alharbi A, Alrakebeh A, et al. Thymoquinone provides structural protection of human hemoglobin against oxidative damage: Biochemical studies [J]. Biochimie, 2022, 192: 102-110
Wang X W, Fan L X, Cheng L, et al. Biodegradable nickel disulfide nanozymes with GSH-depleting function for high-efficiency photothermal-catalytic antibacterial therapy [J]. iScience, 2020, 23(7): 101281
Yang G B, Wang D D, Phua S Z F, et al. Albumin-based therapeutics capable of glutathione consumption and hydrogen peroxide generation for synergetic chemodynamic and chemotherapy of cancer [J]. ACS Nano, 2022, 16(2): 2319-2329
Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine [M]. Oxford: Clarcndon Press, 1985: 331-332
Perally S, Lacourse E J, Campbell A M, et al. Heme transport and detoxification in nematodes: Subproteomics evidence of differential role of glutathione transferases [J]. Journal of Proteome Research, 2008, 7(10): 4557-4565
Leiers B, Kampkötter A, Grevelding C G, et al. A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans [J]. Free Radical Biology & Medicine, 2003, 34(11): 1405-1415
Dallinger R. Strategies of Metal Detoxification in Terrestrial Invertebrates [M]// Dallinger R, Rainbow P. eds. Ecotoxicology of Metals in Invertebrates. Boca Raton: Lewis Publishers, 1993: 333-358
Shi Y J, Xu X B, Chen J, et al. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane [J]. Environmental Pollution, 2018, 232: 245-251
Shi Y J, Xu X B, Zheng X Q, et al. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2015, 174-175: 32-38
Gray B, Carmichael A J. Kinetics of superoxide scavenging by dismutase enzymes and Manganese mimics determined by electron spin resonance [J]. The Biochemical Journal, 1992, 281(Pt 3): 795-802
Paes M C, Oliveira M B, Oliveira P L. Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus [J]. Archives of Insect Biochemistry and Physiology, 2001, 48(2): 63-71
Wang M Y, Qiu S Y, Yang H Y, et al. Spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of potassium iodide and its applications to hydroxylamine-involved Fenton and Fenton-like systems [J]. Chemosphere, 2021, 270: 129448