利用近红外长余辉发光成像技术研究纳米颗粒经肺暴露后在生物体的迁移途径
A near-infrared long-term persistent luminescence imaging technique for tracking nanoparticles after endotracheal instillation
-
摘要: 大气中的超细颗粒物(粒径小于100 nm)由于其超小的粒径,容易进入生物体的循环系统,对其造成极大的伤害;并且因其粒径小,这些超细颗粒物很难在生物体内被示踪,因此研究超细颗粒物在生物体内的迁移过程对于研究大气颗粒物毒理具有重要意义.在本文中,采用近红外长余辉发光成像技术来研究超细颗粒物经肺暴露后在生物体体内的迁移示踪,选择了具备良好生物相容性的多孔二氧化硅为载体,负载具良好近红外长余辉发光性能的ZnGa2O4:Cr(ZGO)模拟大气中的超细颗粒物(ZGO@SiO2).研究结果表明,颗粒经由气管入肺后,会经循环系统迁移到体内其他器官,主要分布于心脏、肝脏和脾脏中,少量分布于肾脏,这可以为下一步研究超细颗粒物的生物毒理提供支持.
-
关键词:
- 超细颗粒 /
- 近红外长余辉成像技术 /
- 气管滴注
Abstract: The ultra-fine particulate matters (less than 100 nm) are easy to enter into circulatory system of organism due to their small particle sizes, which would bring serious harm to organism. On the other hand, these ultra-fine particulate matters are difficult to be observed due to their small particle sizes. Thus, it is very important to investigate the migration behavior of ultra-fine particulate matters in organism. In this paper, we adopted the near-infrared long-term persistent luminescence imaging technology to visualize the migration behavior of ultra-fine particulate matters in organisms via the exposure of lung. Here, the mesoporous silica with good biocompatibility were chosen as templates to load near-infrared long-term persistent luminescence nanoparticles ZnGa2O4:Cr to form ZGO@SiO2 nanospheres, which could be regarded as stimulated ultra-fine particulate matters. The obtained results showed that nanoparticles could easily enter into other organs after passing through the trachea into the lungs. The nanoparticles mainly distribute in the heart, liver, and spleen, while little distributed in the kidney. This long time in vivo imaging technique could provide much support for the further investigation on toxicity of ultra-fine particulate matters in the future. -
[1] JANSSEN N A, HOEK G, SIMIC-LAWSON M, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5[J]. Environ Health Perspect, 2011, 119(12):1691-1699. [2] SUHAIMI N F, JALALUDIN J. Biomarker as a research tool in linking exposure to air particles and respiratory health[J]. Biomed Research International, 2015, 10:962853. [3] ALEXANDRA G, HURLEY J F, TUOMISTO J T, et al. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe[J]. Atmospheric Environment, 2014,84:213-221. [4] 胡彬, 陈瑞, 徐建勋, 等. 雾霾超细颗粒物的健康效应[J]. 科学通报, 2015, 60(30):2808-2823. HU B, CHEN R, XU J X, et al. Health effects of ambient ultrafine (nano) particles in haze[J]. Chinese Science Bulletin, 2015, 60(30):2808-2823(in Chinese).
[5] OBERDÖRSTER G, STONE V, DONALDSON K. Toxicology of nanoparticles:A historical perspective[J]. Nanotoxicology, 2009, 1(1):2-25. [6] LI N, SIOUTAS C, CHO A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage[J]. Environ Health Perspect, 2003, 111(4):455-460. [7] HOHR D, STEINFARTZ Y, SCHINS R P, et al. The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat[J]. International Journal of Hygiene and Environmental Health, 2002, 205(3):239-244. [8] 李秀, 张勇, 张家泉, 等. 黄石城区夏季大气PM10/PM2.5中元素特征分析[J]. 环境化学, 2014, 33(2):357-358. LI X, ZHANG Y, ZHANG J Q,et al. Analysis of element characteristics in PM10/PM2.5 atmosphere of Huangshi City in summer[J]. Environmental Chemistry, 2014, 33(2):357-358(in Chinese).
[9] SHI J P, SUN X, ZHENG S H, et al. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy[J]. Biomaterials, 2018, 152:15-23. [10] SUN X, SHI J P,FU X, et al. Long-term in vivo biodistribution and toxicity study of functionalized near-infrared persistent luminescence nanoparticles[J]. Scientific Report, 2018, 8(1):10595. [11] ZOU R, HUANG J J, SHI J, et al. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence[J]. Nano Research, 2017, 10(6):2070-2082. [12] ZOU R, GONG S M, SHI J P, et al. Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core-shell nanoprobes for in vivo imaging[J]. Chemistry of Materials, 2017, 29(9):3938-3946. [13] SHI J P, FU H X, SUN X,et al. Magnetic, long persistent luminescent and mesoporous nanoparticles as trackable transport drug carriers[J]. Journal of Materials Chemistry B, 2015, 3(4):635-641. [14] SHI J P, SUN X, LI J L, et al. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging[J]. Biomaterials, 2015, 37:260-270. [15] MALDINEY T, BESSIERE A, SEGUIN J, et al. The in vivo activation of persistent nanophosphors for optical imaging of ascularization, tumours and grafted cells[J]. Nature Materials, 2014, 13:418. [16] QIAO Z A, ZHANG L, GUO M Y, et al. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide[J]. Chemistry of Materials, 2009, 21(16):3823-3829. [17] 贾晓峰, 郭新彪. 改进型快速小鼠气管滴注法——透射灯下经口直视滴注法研究[J]. 环境与健康杂志, 2012, 29(3):217-219. JIA X F, GUO X B.Improved technique for rapid endotracheal instillation in mice:Directviewing intubation through oropharynx under the trans -illumination[J]. Journal of Environmental Health, 2012, 29(3):217-219(in Chinese).
[18] PAN Z W, LU Y Y, LIU F.Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 2011, 11:58. [19] LI Y, ZHOU S F, LI Y Y, et al. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging[J]. Journal of Materials Chemistry C, 2014, 2(15):2657. [20] CHEN Z, CHEN H, MENG H, et al. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots[J]. Toxicology and Applied Pharmacology, 2008, 230(3):364-371. [21] YANG Y, SUN Y, CAO T Y, et al. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging[J]. Biomaterials, 2013, 34(3):774-783. [22] ZHANG X Y, YIN J L, PENG C, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration[J]. Carbon, 2011, 49(3):986-995. [23] GNACH A, LIPINSKI T, Bednarkiewicz A, et al. Upconverting nanoparticles:Assessing the toxicity[J]. Chemical Society Reviews, 2015, 44(6):1561-1584.
计量
- 文章访问数: 2075
- HTML全文浏览数: 2075
- PDF下载数: 101
- 施引文献: 0