基于迁移扩散过程模拟的在产园区重金属污染风险动态评价
Dynamic Evaluation of Heavy Metal Pollution Risk in Production Parks Based on Migration and Diffusion Processes Simulation
-
摘要: 在产化工园区土壤-地下水系统中重金属污染的环境风险与健康风险受到广泛关注。目前的风险评价主要基于现状监测数据,缺少基于迁移扩散过程的动态风险评价。本文以某在产园区为研究对象。研究区地下水中的重金属浓度普遍较低,仅有铅(Pb)在部分点位超出了国家地下水质量标准Ⅲ类水的限值,超标率为21.42%。此外,重金属浓度的变异系数普遍超过50%,表明地质条件和企业生产活动对其有显著影响。基于研究区地下水重金属的污染特征,考虑反应性过程,运用TOUGHREACT对园区地下水中3种典型重金属汞(Hg)、铅(Pb)与砷(As)进行迁移扩散模拟,并结合人体健康风险评估模型,动态评估了重金属的健康风险。基于水文地质条件和反应性过程构建的重金属迁移扩散数值模型能够较好识别园区重金属Hg、Pb与As的迁移与衰减过程,浓度计算值与观测值间的决定系数分别为0.93、0.99与0.83,相关性较好。结合过程模拟的地下水健康风险评价结果表明,模拟期2020年8月至2021年3月间,在反应性运移作用下,地下水中Hg、Pb与As污染风险不断降低。在模拟预测期Pb与As所引起的健康风险持续降低,模型预测在2025年4月后,研究区由As饮水途径引起的终身超额致癌风险将降低至1×10-6以下,潜在风险消除。Abstract: Heavy metal contamination in the soil-groundwater system of industrialized chemical parks poses significant environmental and health risks. Current risk evaluations rely primarily on monitoring data and lack dynamic assessments based on migration and diffusion processes. This study focuses on an active industrial park. Although heavy metal concentrations in the groundwater are generally low, lead (Pb) exceeds the Class Ⅲ water quality standard at some points, with an exceedance rate of 21.42%. The coefficients of variation for heavy metal concentrations exceed 50%, indicating substantial impacts from geological conditions and industrial activities. TOUGHREACT, incorporating reactive processes, was used to simulate the migration and diffusion of mercury (Hg), Pb, and arsenic (As) in the groundwater. This simulation was integrated with a human health risk assessment model to evaluate health risks dynamically. The numerical model effectively identifies the transport and attenuation of Hg, Pb, and As, with coefficients of determination of 0.93, 0.99, and 0.83, respectively. The groundwater health risk evaluation, combined with process simulation, indicates that from August 2020 to March 2021, the risk of contamination decreased due to reactive transport. The health risks from Pb and As continued to decline during the simulation period. The model predicts that by April 2025, the lifetime excess cancer risk from As via drinking water will fall below 1×10-6, effectively eliminating the potential risk.
-
-
Xiao H, Shahab A, Li J Y, et al. Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian Karst wetland, China[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109700 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学, 2021, 42(9): 4246-4256 Shi H H, Pan Y J, Zeng M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou Peninsula[J]. Environmental Science, 2021, 42(9): 4246-4256(in Chinese)
Mapoma H W, Xie X J, Pi K F, et al. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong Basin study plot, China[J]. Environmental Science Processes & Impacts, 2016, 18(3): 371-385 Zhong S, Geng H, Zhang F J, et al. Risk assessment and prediction of heavy metal pollution in groundwater and river sediment: A case study of a typical agricultural irrigation area in Northeast China[J]. International Journal of Analytical Chemistry, 2015, 2015: 921539 吕海洋, 党秀丽, 朱影影, 等. 河南省典型工业区地下水水质分析及重金属健康风险评价[J]. 农业环境科学学报, 2023, 42(12): 2740-2751 Lyu H Y, Dang X L, Zhu Y Y, et al. Groundwater quality analysis and heavy metal health risk evaluation in typical industrial areas of Henan Province[J]. Journal of Agricultural and Environmental Sciences, 2023, 42(12): 2740-2751(in Chinese)
范海印, 宋蕊蕊, 于林松, 等. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335 Fan H Y, Song R R, Yu L S, et al. Heavy metal pollution and health risk assessment of groundwater in a typical chemical industry park in northwestern Shandong, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1326-1335(in Chinese)
盛晓寅, 施维林, 郑家传, 等. 基于反距离权重插值法与BP神经网络对浙江某电镀厂遗留地块土壤重金属健康风险评价及预测[J]. 生态毒理学报, 2024, 19(3): 237-258 Sheng X Y, Shi W L, Zheng J C, et al. Evaluation and prediction of heavy metal health risk in soils left over from an electroplating plant in Zhejiang Province based on BP neural network and inverse-distance weighting[J]. Asian Journal of Ecotoxicology, 2024, 19(3): 237-258(in Chinese)
中华人民共和国生态环境部. 地下水环境监测技术规范: HJ/T 164—2020[S]. 北京: 中国环境出版集团, 2020 Xu T F, Spycher N, Sonnenthal E, et al. TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive transport in variably saturated geologic media, version 2.0.2012, Lawrence Berkeley Laboratory Report. Report-55460[R]. Berkeley, California, USA: Lawrence Berkeley Laboratory, 2012 Pruess K, Oldenburg C, Moridis G. TOUGH2 user’s guide, version 2.0.1999, Lawrence Berkeley Laboratory Report. Report-43134[R]. Berkeley, California, USA: Lawrence Berkeley Laboratory, 1999 Powell K J, Brown P L, Byrne R H, et al. Chemical speciation of Hg(Ⅱ) with environmental inorganic ligands[J]. Australian Journal of Chemistry, 2004, 57(10): 993 Skyllberg U. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2): G00C03 Xu T F, Spycher N, Sonnenthal E, et al. TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive transportation in variably saturated geologic media[R]. Berkeley, California, USA: Lawrence Berkeley Laboratory, 2014 Ogunkunle C O, Fatoba P. Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in Southwest Nigeria[J]. Polish Journal of Environmental Studies, 2013, 22(2): 487-493 中国环境科学研究院. 典型地区居民金属环境总暴露研究报告: 汞、镉、砷、铅、铬[M]. 北京: 中国环境出版集团, 2019: 1-2 Richard J H, Bischoff C, Ahrens C G M, et al. Mercury (Ⅱ) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater[J]. Science of the Total Environment, 2016, 539: 36-44 Office of Emergency and Remedial Response, United States Environmental Protection Agency. Risk Assessment Guidance for Superfund (RAGS) Part A[R]. Washington DC: United States Environmental Protection Agency, 1989 赵秀阁, 段小丽. 中国人群暴露参数手册(成人卷)概要[M]. 北京: 中国环境出版社, 2014: 20-21 环境保护部. 中国人群暴露参数手册. 儿童卷: 0~5岁[M]. 北京: 中国环境出版社, 2016: 39-43 环境保护部. 中国人群暴露参数手册. 儿童卷: 6~17岁[M]. 北京: 中国环境出版社, 2016: 25-28 United States Environmental Protection Agency. Exposure factors handbook (EPA/600/P-95/002)[R]. Washington DC: Office of Emergency and Remedial Response, United States Environmental Protection Agency, 1997: 104-126 United States Environmental Protection Agency. Wildlife exposure factors handbook[R]. Washington DC: United States Environmental Protection Agency, 1993 段小丽, 王宗爽, 李琴, 等. 基于参数实测的水中重金属暴露的健康风险研究[J]. 环境科学, 2011, 32(5): 1329-1339 Duan X L, Wang Z S, Li Q, et al. Health risk assessment of heavy metals in drinking water based on field measurement of exposure factors of Chinese people[J]. Environmental Science, 2011, 32(5): 1329-1339(in Chinese)
Stoeva N, Berova M, Zlatev Z. Effect of arsenic on some physiological parameters in bean plants[J]. Biologia Plantarum, 2005, 49(2): 293-296 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017 Wang Q, Zhang Q P, Zhou W. Grassland coverage changes and analysis of the driving forces in Maqu County[J]. Physics Procedia, 2012, 33: 1292-1297 黄健敏. 填海区淤泥重金属释放迁移规律及其环境效应研究——以深港西部通道填海区为例[D]. 成都: 成都理工大学, 2007: 35-37 Huang J M. Study on the release and migration of heavy metals from sludge in reclamation area and its environmental effects— A case study of the reclamation area of Shenzhen-Hong Kong western corridor[D]. Chengdu: Chengdu University of Technology, 2007: 35 -37(in Chinese)
Köhn J, Kruse E E, Santos J E. Lead contamination of groundwater in the northeast of Buenos Aires Province, Argentina[C]// Impact of human activity on groundwater dynamics. Maastricht, Netherlands: The Sixth IAHS Scientific Assembly, 2001: 323-329 Nabulo G, Oryem-Origa H, Diamond M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda[J]. Environmental Research, 2006, 101(1): 42-52 Pruvot C, Douay F, Hervé F, et al. Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas[J]. Journal of Soils and Sediments, 2006, 6(4): 215-220 Bibby R L, Webster-Brown J G. Trace metal adsorption onto urban stream suspended particulate matter (Auckland Region, New Zealand)[J]. Applied Geochemistry, 2006, 21(7): 1135-1151 林大松, 徐应明, 孙国红, 等. 土壤pH、有机质和含水氧化物对镉、铅竞争吸附的影响[J]. 农业环境科学学报, 2007, 26(2): 510-515 Lin D S, Xu Y M, Sun G H, et al. Effects of soil pH, organic matter and hydrous oxides on competitive adsorption of cadmium and lead[J]. Journal of Agro-Environment Science, 2007, 26(2): 510-515(in Chinese)
邱文杰, 宋健, 吴剑锋, 等. 污染场地地下水中汞污染反应运移模拟[J]. 环境科学学报, 2020, 40(7): 2502-2510 Qiu W J, Song J, Wu J F, et al. Reactive transport modeling of mercury species in the groundwater of a contaminated site[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2502-2510(in Chinese)
安礼航, 刘敏超, 张建强, 等. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 2020, 52(2): 234-246 An L H, Liu M C, Zhang J Q, et al. Sources of arsenic in soil and affecting factors of migration and release: A review[J]. Soils, 2020, 52(2): 234-246(in Chinese)
李巧, 刘亚楠, 陶洪飞, 等. 奎屯河流域地下水砷、氟空间分布及成因[J]. 新疆农业大学学报, 2021, 44(5): 337-346 Li Q, Liu Y N, Tao H F, et al. Spatial distribution and causes of arsenic and fluorine in groundwater of Kuitun River Basin[J]. Journal of Xinjiang Agricultural University, 2021, 44(5): 337-346(in Chinese)
陈雯, 余绍文, 廖金, 等. 南昌东北部地下水重金属污染源解析及健康风险评价[J/OL]. 环境科学. (2024-05-17)[2024-08-31]. https://doi.org/10.13227/j.hjkx.202310199Chen W, Yu S W, Liao J, et al. Source analysis and health risk evaluation of heavy metal contamination in groundwater in northeastern Nanchang[J]. Environmental Science. (2024-05-17)[2024-08-31]. https://doi.org/10.13227/j.hjkx.202310199 -

计量
- 文章访问数: 245
- HTML全文浏览数: 245
- PDF下载数: 56
- 施引文献: 0