滦河口-北戴河海域夏、秋季浮游植物群落时空变化及影响因素
Temporal and Spatial Variations of Phytoplankton Community and Their Controlling Factors in the Luanhe-Beidaihe Coastal Waters in Summer and Autumn
-
摘要: 近年来滦河口-北戴河海域生态健康受赤潮、低氧灾害威胁较大。浮游植物在赤潮、低氧发生过程中发挥着关键作用,探究浮游植物群落时空变化及其与环境因子的关系,对保护近海生态系统健康具有重要意义。本研究围绕滦河口-北戴河海域于2019年11月(秋季)和2020年8月(夏季)开展2个航次调查环境因子和网采浮游植物,分析了浮游植物种类组成、细胞丰度、优势种、多样性、空间分布等特征,采用聚类分析研究了浮游植物群落时空格局,采用冗余分析(RDA)研究了浮游植物群落空间变化与环境因子的关系。结果表明,共鉴定出浮游植物3门34属69种,其中以硅藻为主,甲藻和金藻较少。夏季优势种主要为浮动弯角藻(Eucampia zodiacus),秋季优势种包括洛氏角毛藻(Chaetoceros lorenzianus)、中华齿状藻(Odontella chinensis)等。夏季浮游植物平均丰度(309.94×104 cells·m-3)明显高于秋季(14.15×104 cells·m-3),但其Shannon-Wiener多样性指数和Pielou均匀度指数平均值(分别为2.60和0.66)均低于秋季(分别为3.54和0.95)。聚类分析表明,浮游植物群落在夏、秋季之间以及夏季在北戴河附近海域与其南侧海域之间存在显著差异,与浮动弯角藻在北戴河附近海域大量增殖有关。RDA分析表明夏季浮游植物群落空间变化主要受海水温度、盐度和无机氮影响,秋季主要受化学需氧量影响。此外,海流、扇贝摄食作用可能也对浮游植物群落空间变化存在影响。Abstract: In recent years, the ecological health of the Luanhe-Beidaihe coastal waters has been under threat from red tides and hypoxia. Phytoplankton plays a crucial role in the processes of red tides and hypoxia. Therefore, investigating the temporal and spatial variations of the phytoplankton community and their relationships with environmental factors is of great significance for protecting the health of the coastal ecosystem. This study conducted two surveys in November 2019 and August 2020 respectively to obtain the environmental factors and net phytoplankton in the Luanhe-Beidaihe coastal waters. The species composition, cell abundance, dominant species, diversity, and distribution of the phytoplankton community were analyzed. Cluster analysis was employed to study the temporal and spatial patterns of the phytoplankton community, while redundancy analysis (RDA) was used to explore the relationships between the phytoplankton community and environmental factors. The results showed that a total of 69 species of phytoplankton belonging to 3 phyla and 34 genera were identified, mainly composed of diatoms, with relatively fewer dinoflagellates and chrysophytes. The dominant species in summer were mainly Eucampia zodiacus, while in autumn they included Chaetoceros lorenzianus, Odontella chinensis, etc. In summer, average cell abundance (309.94×104 cells·m-3) was higher than in autumn (14.15×104 cells·m-3), but average values of the Shannon-Wiener diversity index and Pielou evenness index (2.60 and 0.66, respectively) were lower than in autumn (3.54 and 0.95, respectively). The cluster analysis indicated significant seasonal differences between summer and autumn, and significant spatial differences between the Beidaihe area and its southern sea areas in summer, which were caused by the proliferation of E. zodiacus near the Beidaihe waters. The RDA analysis revealed that the key factors influencing the spatial variation of the phytoplankton community in summer were seawater temperature, salinity, and dissolved inorganic nitrogen, while in autumn it was mainly chemical oxygen demand. Furthermore, coastal currents and scallop feeding may potentially affect the spatial variations of the phytoplankton community.
-
Key words:
- Luanhe-Beidaihe /
- Qinhuangdao /
- phytoplankton /
- temporal and spatial variation /
- environmental factor
-
-
Falkowski P G. The role of phytoplankton photosynthesis in global biogeochemical cycles[J]. Photosynthesis Research, 1994, 39(3): 235-258 Lalli C, Parsons T. Biological Oceanography: An Introduction[M]. Second edition. Burlington: Elsevier Butterworth-Heinemann, 1997: 40-73 Borja A, Bricker S B, Dauer D M, et al. Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide[J]. Marine Pollution Bulletin, 2008, 56(9): 1519-1537 孙军. 海洋浮游植物与生物碳汇[J]. 生态学报, 2011, 31(18): 5372-5378 Sun J. Marine phytoplankton and biological carbon sink[J]. Acta Ecologica Sinica, 2011, 31(18): 5372-5378(in Chinese)
Li X Y, Yu R C, Richardson A J, et al. Marked shifts of harmful algal blooms in the Bohai Sea linked with combined impacts of environmental changes[J]. Harmful Algae, 2023, 121: 102370 卜世勋, 张福崇, 方笑, 等. 抚宁扇贝养殖区营养盐及浮游植物变化研究[J]. 水产科学, 2023, 42(6): 1015-1024 Bu S X, Zhang F C, Fang X, et al. Changes in nutrient concentrations and species composition and density of phytoplankton in Funing scallop culture area[J]. Fisheries Sciences, 2023, 42(6): 1015-1024(in Chinese)
陈楠生, 黄海龙. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(一): 渤海[J]. 海洋与湖沼, 2021, 52(2): 346-362 Chen N S, Huang H L. Advances in the study of biodiversity of phytoplankton and red tide species in China (Ⅰ): The Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2021, 52(2): 346-362(in Chinese)
Wang H Z, Zhang H Y, Wei H, et al. Temporal variations of the two oxygen depleted zones in the Bohai Sea[J]. Frontiers in Marine Science, 2023, 10: 1247579 冯志权, 郭皓, 马明辉, 等. 滦河口近岸海域浮游植物群落结构[J]. 海洋环境科学, 2005, 24(1): 41-43 Feng Z Q, Guo H, Ma M H, et al. Community of phytoplankton in Luanhe Estuary[J]. Marine Environmental Science, 2005, 24(1): 41-43(in Chinese)
张建乐, 张秋丰. 秦皇岛沿岸浮游植物与赤潮生物的初步研究[J]. 河北渔业, 2007(7): 7-12 Zhang J L, Zhang Q F. A study on phytoplankton and red tide causative species in the coastal water of Qinhuangdao[J]. Hebei Fishery, 2007 (7): 7-12(in Chinese)
李莉, 陈武军, 张永丰, 等. 滦河口-北戴河海域夏季浮游植物群落变化研究[J]. 海洋环境科学, 2013, 32(6): 896-901 Li L, Chen W J, Zhang Y F, et al. Variation characteristics of phytoplankton communities structure in Luanhe-Beidaihe estuary in summer[J]. Marine Environmental Science, 2013, 32(6): 896-901(in Chinese)
Chen Y, Wang L, Liu Z L, et al. Biodiversity and interannual variation of harmful algal bloom species in the coastal sea of Qinhuangdao, China[J]. Life, 2023, 13(1): 192 于湖洋, 崔磊, 潘霖, 等. 秦皇岛海域浮游植物的群落结构特征[J]. 海洋科学, 2016, 40(5): 65-75 Yu H Y, Cui L, Pan L, et al. Characteristics of the phytoplankton community structure in the Qinhuangdao coastal area[J]. Marine Science, 2016, 40(5): 65-75(in Chinese)
Cui L, Lu X X, Dong Y L, et al. Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: A region with recurrent brown tide outbreaks[J]. Ecotoxicology and Environmental Safety, 2018, 159: 85-93 Zhang Q C, Yu R C, Zhao J Y, et al. Distribution of Aureococcus anophagefferens in relation to environmental factors and implications for brown tide seed sources in Qinhuangdao coastal waters, China[J]. Harmful Algae, 2021, 109: 102105 慕建东, 郑向荣, 赵振良, 等. 秦皇岛海域赤潮期间浮游植物的生态特征[J]. 中国水产科学, 2015, 22(2): 288-301 Mu J D, Zheng X R, Zhao Z L, et al. Ecological characteristics of phytoplankton in Qinhuangdao coastal areas during the red-tide period[J]. Journal of Fishery Sciences of China, 2015, 22(2): 288-301(in Chinese)
许歆. 秦皇岛近海浮游植物群落结构变化及其组学研究[D]. 北京: 中国科学院大学, 2017: 27-60 Xu X. Changes of phytoplankton community structure and its omics in Qinhuangdao coastal waters[D]. Beijing: University of Chinese Academy of Sciences, 2017: 27 -60(in Chinese)
马新, 徐金涛, 杨雯, 等. 2021年秦皇岛近岸典型海域浮游植物群落结构的时空变化特征[J]. 海洋与湖沼, 2022, 53(6): 1415-1429 Ma X, Xu J T, Yang W, et al. Spatio-temporal distribution of phytoplankton community in typical coastal waters of Qinhuangdao in 2021[J]. Oceanologia et Limnologia Sinica, 2022, 53(6): 1415-1429(in Chinese)
洛昊, 冯志权, 金照光, 等. 昌黎保护区浮游植物的群落结构特征及变化趋势[J]. 大连海洋大学学报, 2015, 30(2): 207-210 Luo H, Feng Z Q, Jin Z G, et al. Characteristics and variation trend of phytoplankton community in Changli Golden Beach National Ocean Natural Preserve[J]. Journal of Dalian Ocean University, 2015, 30(2): 207-210(in Chinese)
傅圆圆, 杨超, 张坤兰, 等. 河北省沿岸表层温盐特征分析[J]. 海洋环境科学, 2022, 41(1): 94-98 Fu Y Y, Yang C, Zhang K L, et al. Characteristics of sea surface temperature and salinity at tidal gauge stations along Hebei coast[J]. Marine Environmental Science, 2022, 41(1): 94-98(in Chinese)
赵骞, 陈玥, 陈元, 等. 秦皇岛海域海流特征及规模化养殖对其影响的观测研究[J]. 海洋学报(中文版), 2019, 41(6): 23-36 Zhao Q, Chen Y, Chen Y, et al. Current characteristics and its response to large-scale mariculture in Qinhuangdao coastal area based on in situ observation[J]. Haiyang Xuebao, 2019, 41(6): 23-36(in Chinese) 中华人民共和国国家海洋局. 海洋监测规范第4部分: 海水分析(GB/T 17378.4—2007)[S]. 北京: 中国标准出版社, 2008: 57-120 钱树本. 海藻学[M]. 青岛: 中国海洋大学出版社, 2014: 1-822 杨世民, 董树刚. 中国海域常见浮游硅藻图谱[M]. 青岛: 中国海洋大学出版社, 2006: 1-267 郭皓. 中国近海赤潮生物图谱[M]. 北京: 海洋出版社, 2004: 1-107 Shannon C, Weaver W. The Mathematical Theory of Communication[M]. Urbana, IL: University of Illinois Press, 1949: 1-125 Pielou E C. An Introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969: 1-286 Oksanen J, Blanchet F G, Friendly M, et al. Vegan: Community Ecology Package[EB/OL].[2024-07-29]. https://CRAN.R-project.org/package=vegan, 2017 He Y K, Chen Z Y, Feng X, et al. Daily samples revealing shift in phytoplankton community and its environmental drivers during summer in Qinhuangdao coastal area, China[J]. Water, 2022, 14(10): 1625 中华人民共和国国家海洋局. 赤潮监测技术规程: HY/T 069—2005[S]. 北京: 中国标准出版社, 2005 张万磊, 马新, 张永丰, 等. 2000年~2016年秦皇岛海域赤潮特征分析[J]. 海洋湖沼通报, 2020(5): 48-55 Zhang W L, Ma X, Zhang Y F, et al. An analysis of red tide characteristics in Qinhuangdao coastal seawater[J]. Transactions of Oceanology and Limnology, 2020 (5): 48-55(in Chinese)
Nishikawa T. Effects of temperature, salinity and irradiance on the growth of the diatom Eucampia zodiacus caused bleaching of seaweed Porphyra isolated from Harima-Nada, Seto Inland Sea, Japan[J]. Nippon Suisan Gakkaishi, 2002, 68(3): 356-361 霍文毅, 俞志明, 邹景忠, 等. 胶州湾浮动弯角藻赤潮生消动态过程及其成因分析[J]. 水产学报, 2001, 25(3): 222-226 Huo W Y, Yu Z M, Zou J Z, et al. Analysis of dynamic process and the causes of Eucampia zoodiacus red tide in Jiaozhou Bay[J]. Journal of Fisheries of China, 2001, 25(3): 222-226(in Chinese)
Yoshimatsu T, Yamaguchi H, Iimura A, et al. Effects of temperature, salinity, and light intensity on the growth of the diatom Rhizosolenia setigera in Japan[J]. Phycologia, 2020, 59(6): 551-555 Sun C C, Liu J, Li M L, et al. Inventory of riverine dissolved organic carbon in the Bohai Rim[J]. Environmental Pollution, 2022, 293: 118601 刘诚刚, 宁修仁, 郝锵, 等. 海洋浮游植物溶解有机碳释放研究进展[J]. 地球科学进展, 2010, 25(2): 123-132 Liu C C, Ning X R, Hao Q, et al. Advances in the study of photosynthetically produced dissolved organic carbon released of marine phytoplankton[J]. Advances in Earth Science, 2010, 25(2): 123-132(in Chinese)
Chen Z Y, Zhai W D, Yang S, et al. Exploring origin of oxygen-consuming organic matter in a newly developed quasi-hypoxic coastal ocean, the Bohai Sea (China): A stable carbon isotope perspective[J]. Science of the Total Environment, 2022, 837: 155847 于廉涛, 张桂成, 杨伟, 等. 秦皇岛外海低氧区颗粒物吸收光谱特征[J]. 海洋与湖沼, 2024, 55(1): 107-117 Yu L T, Zhang G C, Yang W, et al. Absorption spectrum of particulate matter in low-oxygen area off the Qinhuangdao[J]. Oceanologia et Limnologia Sinica, 2024, 55(1): 107-117(in Chinese)
张萍, 陆家昌, 李朗, 等. 硅壳和细胞内含物对硅藻沉降速率的影响[J]. 海洋环境科学, 2023, 42(6): 927-934 Zhang P, Lu J C, Li L, et al. Effect of shell and cell inclusion on the sinking rate of diatom[J]. Marine Environmental Science, 2023, 42(6): 927-934(in Chinese)
徐雯佳. 基于高分卫星影像的秦皇岛近海浮筏养殖分布遥感监测[J]. 河北渔业, 2020(4): 32-34, 63 Xu W J. Remote sensing monitoring of floating raft culture distribution in Qinhuangdao offshore based on high-resolution satellite images[J]. Hebei Fisheries, 2020(4): 32-34, 63(in Chinese)
-

计量
- 文章访问数: 242
- HTML全文浏览数: 242
- PDF下载数: 60
- 施引文献: 0