稀土元素在水环境中的生物有效性和毒性研究进展
Research Progresses on the Bioavailability and Toxicity of Rare Earth Elements towards Aquatic Organisms
-
摘要: 稀土元素(rare earth elements, REEs)已广泛应用于高科技和清洁生产等领域,并可能通过生产和使用等环节进入水生生态系统。水环境中的REEs可以是自由离子态,或与配体形成络合物,也可以作为胶体留在水相中。REEs可以被水生生物吸收,或吸附在其表面,并通过食物链进行传递,对水生生物或人体造成潜在风险。本文概述了国内外部分水环境中REEs的环境浓度、赋存形态和分布,及其影响因素,总结了目前水环境中REEs在不同营养水平的生物累积和食物链传递规律,阐述了REEs在分子、细胞、器官和个体水平下所产生的毒性和致毒机理,及影响其毒性的生物和非生物因素,并对今后REEs的生物有效性和毒性研究进行展望。Abstract: Rare earth elements (REEs) have been widely applied in high-tech industries and clean production, and can enter into aquatic ecosystems through various stages of production and use. In aquatic environments, REEs can exist as free ions, form complexes with ligands, or remain in the water as colloids. REEs can be absorbed by aquatic organisms, or adsorbed onto their surfaces, and transferred through the food chain, posing potential risks to aquatic organisms. This review summarizes the environmental concentrations, speciation, and distribution of REEs in aquatic environments both domestically and internationally, along with the influencing factors. It also summarizes the bioaccumulation and trophic transfer patterns of REEs in different trophic levels of aquatic ecosystems, elucidates the toxicity and toxic mechanisms of REEs at the molecular, cellular, organ, and individual levels, and discusses the biological and abiotic factors affecting their toxicity. Finally, this review provides an outlook on future research on the bioavailability and toxicity of REEs.
-
Key words:
- rare earth elements /
- aquatic organisms /
- biological toxicity /
- speciation /
- bioaccumulation
-
-
Reed N M, Cairns R O, Hutton R C, et al. Characterization of polyatomic ion interferences in inductively coupled plasma mass spectrometry using a high resolution mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(8): 881-896 Squadrone S, Brizio P, Stella C, et al. Rare earth elements in marine and terrestrial matrices of northwestern Italy: Implications for food safety and human health[J]. Science of the Total Environment, 2019, 660: 1383-1391 Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies[J]. Environmental Science & Technology, 2012, 46(6): 3406-3414 Feng X J, Zhu G C, Li Y N. Toxicological effects of rare earth yttrium on wheat seedlings (Triticum aestivum)[J]. Journal of Rare Earths, 2013, 31(12): 1214-1220 MacMillan G A, Clayden M G, Chételat J, et al. Environmental drivers of rare earth element bioaccumulation in freshwater zooplankton[J]. Environmental Science & Technology, 2019, 53(3): 1650-1660 Kulaksız S, Bau M. Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea[J]. Earth and Planetary Science Letters, 2007, 260(1/2): 361-371 Tepe N, Romero M, Bau M. High-technology metals as emerging contaminants: Strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012[J]. Applied Geochemistry, 2014, 45: 191-197 Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths: A critical review[J]. Journal of Cleaner Production, 2013, 51: 1-22 He M L, Rambeck W A. Rare earth elements—A new generation of growth promoters for pigs?[J]. Archiv Fur Tierernahrung, 2000, 53(4): 323-334 Zeng J, Han G L. Tracing zinc sources with Zn isotope of fluvial suspended particulate matter in Zhujiang River, Southwest China[J]. Ecological Indicators, 2020, 118: 106723 Tirumalesh K, Ramakumar K L, Chidambaram S, et al. Rare earth elements distribution in clay zones of sedimentary formation, Pondicherry, south India[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 294(2): 303-308 Fiket Ž, Mlakar M, Kniewald G. Distribution of rare earth elements in sediments of the marine Lake Mir (Dugi Otok, Croatia)[J]. Geosciences, 2018, 8(8): 301 Zhao Z Y, Wang H P, Zhao Z Z. Fractionation and provenances of rare earth elements in coastal sediments in tropical China[J]. Journal of Coastal Conservation, 2021, 25(1): 13 Li J Q, Feng X W, Sun W A, et al. Solvothermal synthesis of nano-sized skutterudite Co4-x FexSb12 powders[J]. Materials Chemistry and Physics, 2008, 112(1): 57-62 Zhu W, Kennedy M, de Leer E W B, et al. Distribution and modelling of rare earth elements in Chinese river sediments[J]. Science of the Total Environment, 1997, 204(3): 233-243 Amyot M, Clayden M G, MacMillan G A, et al. Fate and trophic transfer of rare earth elements in temperate lake food webs[J]. Environmental Science & Technology, 2017, 51(11): 6009-6017 Gonzalez V, Vignati D A, Leyval C, et al. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry?[J]. Environment International, 2014, 71: 148-157 Santos A C S S, Souza L A, Araujo T G, et al. Fate and trophic transfer of rare earth elements in a tropical estuarine food web[J]. Environmental Science & Technology, 2023, 57(6): 2404-2414 Wang T, Wu Q X, Wang Z H, et al. Anthropogenic gadolinium accumulation and rare earth element anomalies of river water from the middle reach of Yangtze River Basin, China[J]. ACS Earth and Space Chemistry, 2021, 5(11): 3130-3139 Ma L, Dang D H, Wang W, et al. Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters[J]. Environmental Pollution, 2019, 244: 190-201 Piarulli S, Hansen B H, Ciesielski T, et al. Sources, distribution and effects of rare earth elements in the marine environment: Current knowledge and research gaps[J]. Environmental Pollution, 2021, 291: 118230 Turner D R, Whitfield M, Dickson A G. The equilibrium speciation of dissolved components in freshwater and sea water at 25℃ and 1 atm pressure[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 855-881 Byrne R H, Li B Q. Comparative complexation behavior of the rare earths[J]. Geochimica et Cosmochimica Acta, 1995, 59(22): 4575-4589 Wei Z, Yin M, Zhang X, et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi Region (Southern China)[J]. Environmental Pollution, 2001, 114(3): 345-355 Liang T, Li K X, Wang L Q. State of rare earth elements in different environmental components in mining areas of China[J]. Environmental Monitoring and Assessment, 2014, 186(3): 1499-1513 Tang S T, Zheng C L, Chen M J, et al. Geobiochemistry characteristics of rare earth elements in soil and ground water: A case study in Baotou, China[J]. Scientific Reports, 2020, 10(1): 11740 Li X F, Chen Z B, Chen Z Q, et al. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China[J]. Chemosphere, 2013, 93(6): 1240-1246 Négrel P, Guerrot C, Cocherie A, et al. Rare earth elements, neodymium and strontium isotopic systematics in mineral waters: Evidence from the Massif Central, France[J]. Applied Geochemistry, 2000, 15(9): 1345-1367 Weltje L, Heidenreich H, Zhu W Z, et al. Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands[J]. Science of the Total Environment, 2002, 286(1/3): 191-214 Lawrence M G, Greig A, Collerson K D, et al. Direct quantification of rare earth element concentrations in natural waters by ICP-MS[J]. Applied Geochemistry, 2006, 21(5): 839-848 Kulaksız S, Bau M. Rare earth elements in the Rhine River, Germany: First case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere[J]. Environment International, 2011, 37(5): 973-979 Thibault de Chanvalon A, Metzger E, Mouret A, et al. Particles transformation in estuaries: Fe, Mn and REE signatures through the Loire Estuary[J]. Journal of Sea Research, 2016, 118: 103-112 Cánovas C R, Basallote M D, Macías F. Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain)[J]. Environmental Pollution, 2020, 267: 115506 Strakhovenko V, Belkina N, Subetto D, et al. Distribution of rare earth elements and yttrium in water, suspended matter and bottom sediments in Lake Onego: Evidence of the watershed transformation in the Late Pleistocene[J]. Quaternary International, 2023, 644: 120-133 Akagi T, Edanami K. Sources of rare earth elements in shells and soft-tissues of bivalves from Tokyo Bay[J]. Marine Chemistry, 2017, 194: 55-62 Rousseau T C, Sonke J E, Chmeleff J, et al. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary[J]. Nature Communications, 2015, 6: 7592 Andrade R L B, Hatje V, Pedreira R M A, et al. REE fractionation and human Gd footprint along the continuum between Paraguaçu River to coastal South Atlantic waters[J]. Chemical Geology, 2020, 532: 119303 Barry M J, Meehan B J. The acute and chronic toxicity of lanthanum to Daphnia carinata[J]. Chemosphere, 2000, 41(10): 1669-1674 Weltje L, Verhoof L R C W, Verweij W, et al. Lutetium speciation and toxicity in a microbial bioassay: Testing the free-ion model for lanthanides[J]. Environmental Science & Technology, 2004, 38(24): 6597-6604 Ma Y H, Wang J K, Peng C, et al. Toxicity of cerium and thorium on Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2016, 134P1: 226-232 de Freitas T O P, Pedreira R M A, Hatje V. Distribution and fractionation of rare earth elements in sediments and mangrove soil profiles across an estuarine gradient[J]. Chemosphere, 2021, 264: 128431 Shynu R, Rao V P, Parthiban G, et al. REE in suspended particulate matter and sediment of the Zuari Estuary and adjacent shelf, western India: Influence of mining and estuarine turbidity[J]. Marine Geology, 2013, 346: 326-342 Brito P, Prego R, Mil-Homens M, et al. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus Estuary, Portugal[J]. Science of the Total Environment, 2018, 621: 317-325 Marmolejo-Rodríguez A J, Prego R, Meyer-Willerer A, et al. Rare earth elements in iron oxy-hydroxide rich sediments from the Marabasco River-Estuary System (Pacific coast of Mexico). REE affinity with iron and aluminium[J]. Journal of Geochemical Exploration, 2007, 94(1/3): 43-51 Verplanck P L, Taylor H E, Nordstrom D K, et al. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado[J]. Environmental Science & Technology, 2005, 39(18): 6923-6929 Davranche M, Gruau G, Dia A, et al. Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater[J]. Aquatic Geochemistry, 2015, 21(2): 197-215 Andersson K, Dahlqvist R, Turner D, et al. Colloidal rare earth elements in a boreal river: Changing sources and distributions during the spring flood[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3261-3274 Marsac R, Davranche M, Gruau G, et al. An improved description of the interactions between rare earth elements and humic acids by modeling: PHREEQC-model Ⅵ coupling[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5625-5637 De Carlo E H, Wen X Y, Irving M. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles[J]. Aquatic Geochemistry, 1997, 3(4): 357-389 Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1): 35-47 Song H, Shin W J, Ryu J S, et al. Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea[J]. Chemosphere, 2017, 172: 155-165 Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143(1/4): 245-255 Pedreira R M A, Pahnke K, Böning P, et al. Tracking hospital effluent-derived gadolinium in Atlantic coastal waters off Brazil[J]. Water Research, 2018, 145: 62-72 Schijf J, Christy I J. Effect of Mg and Ca on the stability of the MRI contrast agent Gd-DTPA in seawater[J]. Frontiers in Marine Science, 2018, 5: 111 Leybourne M I, Johannesson K H. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe-Mn oxyhydroxides: Fractionation, speciation, and controls over REE+Y patterns in the surface environment[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 5962-5983 Migaszewski Z M, Gałuszka A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(5): 429-471 Zeng J, Han G L, Yang K H. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand[J]. Journal of Cleaner Production, 2020, 265: 121898 Louis P, Messaoudene A, Jrad H, et al. Understanding rare earth elements concentrations, anomalies and fluxes at the river basin scale: The Moselle River (France) as a case study[J]. Science of the Total Environment, 2020, 742: 140619 Wang X Y, Jin T Z, Comblin V, et al. A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(Ⅲ) polyaza polycarboxylic MRI contrast agent[J]. Inorganic Chemistry, 1992, 31(6): 1095-1099 Kalman F K, Woods M, Caravan P, et al. Potentiometric and relaxometric properties of a gadolinium-based MRI contrast agent for sensing tissue pH[J]. Inorganic Chemistry, 2007, 46(13): 5260-5270 Sherry A D, Caravan P, Lenkinski R E. Primer on gadolinium chemistry[J]. Journal of Magnetic Resonance Imaging, 2009, 30(6): 1240-1248 Borrego J, López-González N, Carro B, et al. Geochemistry of rare-earth elements in Holocene sediments of an acidic estuary: Environmental markers (Tinto River Estuary, south-western Spain)[J]. Journal of Geochemical Exploration, 2005, 86(3): 119-129 Tang J W, Johannesson K H. Speciation of rare earth elements in natural terrestrial waters: Assessing the role of dissolved organic matter from the modeling approach[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2321-2339 Fee J A, Gaudette H E, Lyons W B, et al. Rare-earth element distribution in Lake Tyrrell groundwaters, Victoria, Australia[J]. Chemical Geology, 1992, 96(1/2): 67-93 Sholkovitz E R. The aquatic chemistry of rare earth elements in rivers and estuaries[J]. Aquatic Geochemistry, 1995, 1(1): 1-34 Sholkovitz E, Szymczak R. The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems[J]. Earth and Planetary Science Letters, 2000, 179(2): 299-309 Saha N, Webb G E, Zhao J X, et al. Spatiotemporal variation of rare earth elements from river to reef continuum aids monitoring of terrigenous sources in the Great Barrier Reef[J]. Geochimica et Cosmochimica Acta, 2021, 299: 85-112 Sholkovitz E R. Artifacts associated with the chemical leaching of sediments for rare-earth elements[J]. Chemical Geology, 1989, 77(1): 47-51 Sholkovitz E R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 831-845 Chakraborty P, Raghunadh Babu P V, Sarma V V. A multi-method approach for the study of lanthanum speciation in coastal and estuarine sediments[J]. Journal of Geochemical Exploration, 2011, 110(2): 225-231 Zhang C S, Wang L J, Zhang S, et al. Geochemistry of rare earth elements in the mainstream of the Yangtze River, China[J]. Applied Geochemistry, 1998, 13(4): 451-462 Suja S, Fernandes L L, Rao V P. Distribution and fractionation of rare earth elements and yttrium in suspended and bottom sediments of the Kali Estuary, western India[J]. Environmental Earth Sciences, 2017, 76(4): 174 Andersen R A, Wiger R, Daae H L, et al. Is the metal binding protein metallothionein present in the coelenterate Hydra attenuata?[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1988, 91(2): 553-557 Quinn B, Gagné F, Blaise C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata[J]. Science of the Total Environment, 2008, 389(2/3): 306-314 Guo Q, You W L. A comprehensive evaluation of the international competitiveness of strategic minerals in China, Australia, Russia and India: The case of rare earths[J]. Resources Policy, 2023, 85: 103821 Kik K, Bukowska B, Sicińska P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms[J]. Environmental Pollution, 2020, 262: 114297 Li H S, Gu Y G, Liang R Z, et al. Heavy metals in riverine/estuarine sediments from an aquaculture wetland in metropolitan areas, China: Characterization, bioavailability and probabilistic ecological risk[J]. Environmental Pollution, 2023, 324: 121370 Moermond C T, Tijink J, van Wezel A P, et al. Distribution, speciation, and bioavailability of lanthanides in the Rhine-Meuse estuary, The Netherlands[J]. Environmental Toxicology and Chemistry, 2001, 20(9): 1916-1926 Marginson H, MacMillan G A, Grant E, et al. Rare earth element bioaccumulation and cerium anomalies in biota from the Eastern Canadian subarctic (Nunavik)[J]. Science of the Total Environment, 2023, 879: 163024 Lachaux N, Catrouillet C, Marsac R, et al. Implications of speciation on rare earth element toxicity: A focus on organic matter influence in Daphnia magna standard test[J]. Environmental Pollution, 2022, 307: 119554 Lachaux N, Cossu-Leguille C, Poirier L, et al. Integrated environmental risk assessment of rare earth elements mixture on aquatic ecosystems[J]. Frontiers in Environmental Science, 2022, 10: 974191 Tao Y, Shen L, Feng C, et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review[J]. Environmental Pollution, 2022, 298: 118540 Holstein S E H. Clathrin and plant endocytosis[J]. Traffic, 2002, 3(9): 614-620 Maleke M, Valverde A, Vermeulen J G, et al. Biomineralization and bioaccumulation of europium by a thermophilic metal resistant bacterium[J]. Frontiers in Microbiology, 2019, 10: 81 Zhao C M, Wilkinson K J. Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands[J]. Environmental Science & Technology, 2015, 49(4): 2207-2214 Hare L. Aquatic insects and trace metals: Bioavailability, bioaccumulation, and toxicity[J]. Critical Reviews in Toxicology, 1992, 22(5/6): 327-369 Bonnail E, Pérez-López R, Sarmiento A M, et al. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea[J]. Journal of Hazardous Materials, 2017, 338: 466-471 Liu Y, Peng Z C, Wei G J, et al. Interannual variation of rare earth element abundances in corals from northern coast of the South China Sea and its relation with sea-level change and human activities[J]. Marine Environmental Research, 2011, 71(1): 62-69 MacMillan G A, Chételat J, Heath J P, et al. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic[J]. Environmental Science Processes & Impacts, 2017, 19(10): 1336-1345 Souza I C, Morozesk M, Azevedo V C, et al. Trophic transfer of emerging metallic contaminants in a neotropical mangrove ecosystem food web[J]. Journal of Hazardous Materials, 2021, 408: 124424 Dai Y B, Sun S, Li Y, et al. Residual levels and health risk assessment of rare earth elements in Chinese resident diet: A market-based investigation[J]. Science of the Total Environment, 2022, 828: 154119 Rétif J, Zalouk-Vergnoux A, Kamari A, et al. Trophic transfer of rare earth elements in the food web of the Loire estuary (France)[J]. Science of the Total Environment, 2024, 914: 169652 Mashitah S M, Shazili N A M, Rashid M K A. Elemental concentrations in brown seaweed, Padina sp. along the east coast of Peninsular Malaysia[J]. Aquatic Ecosystem Health & Management, 2012, 15(3): 267-278 Goecke F, Aránguiz-Acuña A, Palacios M, et al. Latitudinal distribution of lanthanides contained in macroalgae in Chile: An inductively coupled plasma-mass spectrometric (ICP-MS) determination[J]. Journal of Applied Phycology, 2017, 29(4): 2117-2128 Sakamoto N, Kano N, Imaizumi H. Biosorption of uranium and rare earth elements using biomass of algae[J]. Bioinorganic Chemistry and Applications, 2008, 2008: 706240 张慧敏, 邓利, 杨俊, 等. 深圳近岸海域海洋动物稀土元素组成特征及配分模式研究[J]. 卫生研究, 2009, 38(5): 543-545 Zhang H M, Deng L, Yang J, et al. Rare earth elements in marine organisms from Shenzhen coastal region[J]. Journal of Hygiene Research, 2009, 38(5): 543-545(in Chinese)
Wang Z S, Yin L, Xiang H Y, et al. Accumulation patterns and species-specific characteristics of yttrium and rare earth elements (YREEs) in biological matrices from Maluan Bay, China: Implications for biomonitoring[J]. Environmental Research, 2019, 179(Pt A): 108804 Li J X, Zheng L, Sun C J, et al. Study on ecological and chemical properties of rare earth elements in tropical marine organisms[J]. Chinese Journal of Analytical Chemistry, 2016, 44(10): 1539-1546 Costas-Rodríguez M, Lavilla I, Bendicho C. Classification of cultivated mussels from Galicia (Northwest Spain) with European Protected Designation of Origin using trace element fingerprint and chemometric analysis[J]. Analytica Chimica Acta, 2010, 664(2): 121-128 Fu F F, Akagi T, Yabuki S, et al. Distribution of rare earth elements in seaweed: Implication of two different sources of rare earth elements and silicon in seaweed[J]. Journal of Phycology, 2000, 36(1): 62-70 Hou X L, Yan X J. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae[J]. Science of the Total Environment, 1998, 222(3): 141-156 Vítová M, Čížková M, Zachleder V. Lanthanides and Algae[M] //Lanthanides. London: IntechOpen, 2019: 87-111 Ren Q G, Hua Y, Shen H, et al. Cytochemical behavior of rare earth ions in Euglena gracilis studied by XAFS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272(2): 359-362 Guo P, Wang J, Li X, et al. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 161: 801-807 Ryabushko V I, Gureeva E V, Kapranov S V, et al. Rare earth elements in the red, brown, green algae and the seagrass from Kazachya Bay (Crimea, Black Sea)[J]. Regional Studies in Marine Science, 2024, 69: 103318 Strady E, Kim I, Radakovitch O, et al. Rare earth element distributions and fractionation in plankton from the northwestern Mediterranean Sea[J]. Chemosphere, 2015, 119: 72-82 Briant N, Savoye N, Chouvelon T, et al. Carbon and nitrogen elemental and isotopic ratios of filter-feeding bivalves along the French coasts: An assessment of specific, geographic, seasonal and multi-decadal variations[J]. Science of the Total Environment, 2018, 613/614: 196-207 Chandurvelan R, Marsden I D, Glover C N, et al. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses[J]. Science of the Total Environment, 2015, 511: 663-675 Rodríguez-Velarte P, Babarro J M F, Cobelo-García A. Bioaccumulation patterns of trace elements by native (M. galloprovincialis) and invasive (X. securis) mussels in coastal systems (Vigo Ria, NW Iberian Peninsula)[J]. Marine Pollution Bulletin, 2022, 176: 113463 Wang X, Barrat J A, Bayon G, et al. Lanthanum anomalies as fingerprints of methanotrophy[J]. Geochemical Perspectives Letters, 2020, 14: 26-30 Barrat J A, Chauvaud L, Olivier F, et al. Rare earth elements and yttrium in suspension-feeding bivalves (dog cockle, Glycymeris glycymeris L.): Accumulation, vital effects and pollution[J]. Geochimica et Cosmochimica Acta, 2022, 339: 12-21 Merschel G, Bau M. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water[J]. Science of the Total Environment, 2015, 533: 91-101 Le Goff S, Barrat J A, Chauvaud L, et al. Compound-specific recording of gadolinium pollution in coastal waters by great scallops[J]. Scientific Reports, 2019, 9(1): 8015 Valdés-Vilchis S, Sánchez-Beristain F, Bernal J P, et al. Rare earth elements and yttrium (REE+Y) patterns in recent Anadara brasiliana shells from Playa Norte, Barra de Cazones (Veracruz, Mexico): Evidence of anthropogenic contamination linked to river output?[J]. Journal of South American Earth Sciences, 2021, 110: 103368 Yang L P, Wang X N, Nie H Q, et al. Residual levels of rare earth elements in freshwater and marine fish and their health risk assessment from Shandong, China[J]. Marine Pollution Bulletin, 2016, 107(1): 393-397 郭卫东, 胡明辉, 杨逸萍, 等. 厦门海域鱼体稀土元素的生态化学特征[J]. 海洋与湖沼, 2003, 34(3): 241-248 Guo W D, Hu M H, Yang Y P, et al. Characteristics of ecological chemistry of rare earth elements in fish from Xiamen Bay[J]. Oceanologia et Limnologia Sinica, 2003, 34(3): 241-248 (in Chinese) Mayfield D B, Fairbrother A. Examination of rare earth element concentration patterns in freshwater fish tissues[J]. Chemosphere, 2015, 120: 68-74 Squadrone S, Brizio P, Stella C, et al. Differential bioaccumulation of trace elements and rare earth elements in the muscle, kidneys, and liver of the invasive Indo-Pacific lionfish (Pterois spp.) from Cuba[J]. Biological Trace Element Research, 2020, 196(1): 262-271 Reindl A R, Saniewska D, Grajewska A, et al. Alimentary exposure and elimination routes of rare earth elements (REE) in marine mammals from the Baltic Sea and Antarctic coast[J]. Science of the Total Environment, 2021, 754: 141947 Nørregaard R D, Kaarsholm H, Bach L, et al. Bioaccumulation of rare earth elements in juvenile Arctic char (Salvelinus alpinus) under field experimental conditions[J]. Science of the Total Environment, 2019, 688: 529-535 Pannetier P, Caron A, Campbell P G C, et al. A comparison of metal concentrations in the tissues of yellow American eel (Anguilla rostrata) and European eel (Anguilla anguilla)[J]. Science of the Total Environment, 2016, 569: 1435-1445 Sun H, Wang X R, Hua Z Z, et al. Bioconcentration and elimination of five light rare earth elements in carp (Cyprinus carpio L.)[J]. Chemosphere, 1996, 33(8): 1475-1483 Tu Q, Wang X R, Tian L Q, et al. Bioaccumulation of the rare earth elements lanthanum, gadolinium and yttrium in carp (Cyprinus carpio)[J]. Environmental Pollution, 1994, 85(3): 345-350 Miranda D A, Benskin J P, Awad R, et al. Bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web[J]. Science of the Total Environment, 2021, 754: 142146 Bustamante P, Miramand P. Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay[J]. Science of the Total Environment, 2005, 337(1/3): 59-73 Reindl A R, Falkowska L. Trace elements in the muscle, ova and seminal fluid of key clupeid representatives from the Gdansk Bay (South Baltic Sea) and Iberian Peninsula (North-East Atlantic)[J]. Journal of Trace Elements in Medicine and Biology, 2021, 68: 126803 Cardon P Y, Triffault-Bouchet G, Caron A, et al. Toxicity and subcellular fractionation of yttrium in three freshwater organisms: Daphnia magna, Chironomus riparius, and Oncorhynchus mykiss[J]. ACS Omega, 2019, 4(9): 13747-13755 Rainbow P S. Trace metal concentrations in aquatic invertebrates: Why and so what?[J]. Environmental Pollution, 2002, 120(3): 497-507 Gobas F A P C, Muir D C G, MacKay D. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish[J]. Chemosphere, 1988, 17(5): 943-962 Squadrone S, Brizio P, Stella C, et al. Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy)[J]. Environmental Pollution, 2016, 215: 77-83 Wei Y H, Zhang J Y, Zhang D W, et al. Metal concentrations in various fish organs of different fish species from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2014, 104: 182-188 Kumar K, Saion E, Halimah M K, et al. Rare earth element (REE) in surface mangrove sediment by instrumental neutron activation analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(3): 667-676 Beiras R, Vázquez E, Bellas J, et al. Sea-urchin embryo bioassay for in situ evaluation of the biological quality of coastal seawater[J]. Estuarine, Coastal and Shelf Science, 2001, 52(1): 29-32 Xu X, Li Y, Wang Y, et al. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay[J]. Toxicology in Vitro, 2011, 25(1): 294-300 Freitas R, Costa S, D Cardoso C E, et al. Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis[J]. Chemosphere, 2020, 244: 125457 Henriques B, Coppola F, Monteiro R, et al. Toxicological assessment of anthropogenic gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis[J]. Science of the Total Environment, 2019, 664: 626-634 Oral R, Pagano G, Siciliano A, et al. Heavy rare earth elements affect early life stages in Paracentrotus lividus and Arbacia lixula sea urchins[J]. Environmental Research, 2017, 154: 240-246 Hanana H, Turcotte P, André C, et al. Comparative study of the effects of gadolinium chloride and gadolinium-based magnetic resonance imaging contrast agent on freshwater mussel, Dreissena polymorpha[J]. Chemosphere, 2017, 181: 197-207 Figueiredo C, Grilo T F, Lopes C, et al. Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla)[J]. Chemosphere, 2018, 206: 414-423 Pinto J, Costa M, Leite C, et al. Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts[J]. Aquatic Toxicology, 2019, 211: 181-192 Dubé M, Auclair J, Hanana H, et al. Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 223: 88-95 Wang Y J, Jin H B, Deng S H, et al. Effects of neodymium on growth and physiological characteristics of Microcystis aeruginosa[J]. Journal of Rare Earths, 2011, 29(4): 388-395 Wu Y, Wang Y J, Du J G, et al. Effects of yttrium under lead stress on growth and physiological characteristics of Microcystis aeruginosa[J]. Journal of Rare Earths, 2016, 34(7): 747-756 Chu W Y, Cai S J, Fu Y Y, et al. The toxicity of cerium nitrate to Elodea canadensis: Subcellular distribution, chemical forms and physiological effects[J]. Acta Physiologiae Plantarum, 2014, 36(9): 2491-2499 González V, Vignati D A, Pons M N, et al. Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms[J]. Environmental Pollution, 2015, 199: 139-147 Joonas E, Aruoja V, Olli K, et al. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects[J]. Science of the Total Environment, 2017, 593/594: 478-486 Ř ezanka T, Kaineder K, Mezricky D, et al. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda[J]. Photosynthesis Research, 2016, 130(1/3): 335-346 Martino C, Chiarelli R, Bosco L, et al. Induction of skeletal abnormalities and autophagy in Paracentrotus lividus sea urchin embryos exposed to gadolinium[J]. Marine Environmental Research, 2017, 130: 12-20 Martino C, Costa C, Roccheri M C, et al. Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species[J]. Aquatic Toxicology, 2018, 194: 57-66 Trifuoggi M, Pagano G, Guida M, et al. Comparative toxicity of seven rare earth elements in sea urchin early life stages[J]. Environmental Science and Pollution Research International, 2017, 24(25): 20803-20810 Oral R, Bustamante P, Warnau M, et al. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos[J]. Chemosphere, 2010, 81(2): 194-198 Pagano G, Guida M, Tommasi F, et al. Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects[J]. Ecotoxicology and Environmental Safety, 2015, 115: 40-48 Flik G, Verbost P M, Bonga S E W. Calcium Transport Processes in Fishes[M] //Fish Physiology. Amsterdam: Elsevier, 1995: 317-342 Atli G, Canli M. Alterations in ion levels of freshwater fish Oreochromis niloticus following acute and chronic exposures to five heavy metals[J]. Turkish Journal of Zoology, 2011, 35(5): 725-736 Gobi N, Vaseeharan B, Rekha R, et al. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus[J]. Ecotoxicology and Environmental Safety, 2018, 162: 147-159 Pastorino P, Pizzul E, Barceló D, et al. Ecology of oxidative stress in the Danube barbel (Barbus balcanicus) from a winegrowing district: Effects of water parameters, trace and rare earth elements on biochemical biomarkers[J]. Science of the Total Environment, 2021, 772: 145034 Hua D, Wang J W, Yu D H, et al. Lanthanum exerts acute toxicity and histopathological changes in gill and liver tissue of rare minnow (Gobiocypris rarus)[J]. Ecotoxicology, 2017, 26(9): 1207-1215 Evans C H. Interesting and useful biochemical properties of lanthanides[J]. Trends in Biochemical Sciences, 1983, 8(12): 445-449 Lortholarie M, Poirier L, Kamari A, et al. Rare earth element organotropism in European eel (Anguilla anguilla)[J]. Science of the Total Environment, 2021, 766: 142513 Aharchaou I, Beaubien C, Campbell P G C, et al. Lanthanum and cerium toxicity to the freshwater green alga Chlorella fusca: Applicability of the biotic ligand model[J]. Environmental Toxicology and Chemistry, 2020, 39(5): 996-1005 Åström M E, Österholm P, Gustafsson J P, et al. Attenuation of rare earth elements in a boreal estuary[J]. Geochimica et Cosmochimica Acta, 2012, 96: 105-119 Wang Y, Zhang M, Wang X. Population growth responses of Tetrahymena shanghaiensis in exposure to rare earth elements[J]. Biological Trace Element Research, 2000, 75(1/3): 265-275 Mestre N C, Sousa V S, Rocha T L, et al. Ecotoxicity of rare earths in the marine mussel Mytilus galloprovincialis and a preliminary approach to assess environmental risk[J]. Ecotoxicology, 2019, 28(3): 294-301 Piarulli S, Riedel J A, Fossum F N, et al. Effects of gadolinium (Gd) and a Gd-based contrast agent (GBCA) on early life stages of zebrafish (Danio rerio)[J]. Chemosphere, 2024, 350: 140950 Tai P D, Zhao Q, Su D, et al. Biological toxicity of lanthanide elements on algae[J]. Chemosphere, 2010, 80(9): 1031-1035 Blinova I, Vija H, Lukjanova A, et al. Assessment of the hazard of nine (doped) lanthanides-based ceramic oxides to four aquatic species[J]. Science of the Total Environment, 2018, 612: 1171-1176 Blinova I, Muna M, Heinlaan M, et al. Potential hazard of lanthanides and lanthanide-based nanoparticles to aquatic ecosystems: Data gaps, challenges and future research needs derived from bibliometric analysis[J]. Nanomaterials, 2020, 10(2): 328 Vukov O, Smith D S, McGeer J C. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach[J]. Aquatic Toxicology, 2016, 170: 142-151 Blinova I, Lukjanova A, Muna M, et al. Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans[J]. Science of the Total Environment, 2018, 642: 1100-1107 Borgmann U, Couillard Y, Doyle P, et al. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness[J]. Environmental Toxicology and Chemistry, 2005, 24(3): 641-652 Loveridge A, Smith D S, McGeer J C. Dissolved organic matter mitigates the acute toxicity of thulium to Hyalella azteca but Ca, Mg and Na do not[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(4): 637-647 Wang M J, Wang W X. Cadmium in three marine phytoplankton: Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107 Hu G R, Lin C Q, Yang Q L, et al. Distribution and source appointment of rare earth elements in offshore sediments of Western Xiamen Bay, Southeast China[J]. Journal of Geochemical Exploration, 2019, 201: 31-39 Arienzo M, Ferrara L, Trifuoggi M, et al. Advances in the fate of rare earth elements, REE, in transitional environments: Coasts and estuaries[J]. Water, 2022, 14(3): 401 -

计量
- 文章访问数: 254
- HTML全文浏览数: 254
- PDF下载数: 63
- 施引文献: 0