稀土元素在水环境中的生物有效性和毒性研究进展

邓云诚, 赵春梅, 范文宏, 汤叶涛, 仇荣亮. 稀土元素在水环境中的生物有效性和毒性研究进展[J]. 生态毒理学报, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001
引用本文: 邓云诚, 赵春梅, 范文宏, 汤叶涛, 仇荣亮. 稀土元素在水环境中的生物有效性和毒性研究进展[J]. 生态毒理学报, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001
DENG Yuncheng, ZHAO Chunmei, FAN Wenhong, TANG Yetao, QIU Rongliang. Research Progresses on the Bioavailability and Toxicity of Rare Earth Elements towards Aquatic Organisms[J]. Asian journal of ecotoxicology, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001
Citation: DENG Yuncheng, ZHAO Chunmei, FAN Wenhong, TANG Yetao, QIU Rongliang. Research Progresses on the Bioavailability and Toxicity of Rare Earth Elements towards Aquatic Organisms[J]. Asian journal of ecotoxicology, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001

稀土元素在水环境中的生物有效性和毒性研究进展

    作者简介: 邓云诚(2001—),男,硕士研究生,研究方向为稀土元素的生物有效性,E-mail:dengych33@mail2.sysu.edu.cn
    通讯作者: 赵春梅(1984-),女,博士,副教授,主要研究方向为生态毒理学。E-mail:zhaochm3@mail.sysu.edu.cn; 
  • 基金项目:

    国家自然科学基金面上项目(42077362)

  • 中图分类号: X171.5

Research Progresses on the Bioavailability and Toxicity of Rare Earth Elements towards Aquatic Organisms

    Corresponding author: ZHAO Chunmei, zhaochm3@mail.sysu.edu.cn
  • Fund Project:
  • 摘要: 稀土元素(rare earth elements, REEs)已广泛应用于高科技和清洁生产等领域,并可能通过生产和使用等环节进入水生生态系统。水环境中的REEs可以是自由离子态,或与配体形成络合物,也可以作为胶体留在水相中。REEs可以被水生生物吸收,或吸附在其表面,并通过食物链进行传递,对水生生物或人体造成潜在风险。本文概述了国内外部分水环境中REEs的环境浓度、赋存形态和分布,及其影响因素,总结了目前水环境中REEs在不同营养水平的生物累积和食物链传递规律,阐述了REEs在分子、细胞、器官和个体水平下所产生的毒性和致毒机理,及影响其毒性的生物和非生物因素,并对今后REEs的生物有效性和毒性研究进行展望。
  • 加载中
  • Reed N M, Cairns R O, Hutton R C, et al. Characterization of polyatomic ion interferences in inductively coupled plasma mass spectrometry using a high resolution mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(8): 881-896
    Squadrone S, Brizio P, Stella C, et al. Rare earth elements in marine and terrestrial matrices of northwestern Italy: Implications for food safety and human health[J]. Science of the Total Environment, 2019, 660: 1383-1391
    Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies[J]. Environmental Science & Technology, 2012, 46(6): 3406-3414
    Feng X J, Zhu G C, Li Y N. Toxicological effects of rare earth yttrium on wheat seedlings (Triticum aestivum)[J]. Journal of Rare Earths, 2013, 31(12): 1214-1220
    MacMillan G A, Clayden M G, Chételat J, et al. Environmental drivers of rare earth element bioaccumulation in freshwater zooplankton[J]. Environmental Science & Technology, 2019, 53(3): 1650-1660
    Kulaksız S, Bau M. Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea[J]. Earth and Planetary Science Letters, 2007, 260(1/2): 361-371
    Tepe N, Romero M, Bau M. High-technology metals as emerging contaminants: Strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012[J]. Applied Geochemistry, 2014, 45: 191-197
    Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths: A critical review[J]. Journal of Cleaner Production, 2013, 51: 1-22
    He M L, Rambeck W A. Rare earth elements—A new generation of growth promoters for pigs?[J]. Archiv Fur Tierernahrung, 2000, 53(4): 323-334
    Zeng J, Han G L. Tracing zinc sources with Zn isotope of fluvial suspended particulate matter in Zhujiang River, Southwest China[J]. Ecological Indicators, 2020, 118: 106723
    Tirumalesh K, Ramakumar K L, Chidambaram S, et al. Rare earth elements distribution in clay zones of sedimentary formation, Pondicherry, south India[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 294(2): 303-308
    Fiket Ž, Mlakar M, Kniewald G. Distribution of rare earth elements in sediments of the marine Lake Mir (Dugi Otok, Croatia)[J]. Geosciences, 2018, 8(8): 301
    Zhao Z Y, Wang H P, Zhao Z Z. Fractionation and provenances of rare earth elements in coastal sediments in tropical China[J]. Journal of Coastal Conservation, 2021, 25(1): 13
    Li J Q, Feng X W, Sun W A, et al. Solvothermal synthesis of nano-sized skutterudite Co4-x FexSb12 powders[J]. Materials Chemistry and Physics, 2008, 112(1): 57-62
    Zhu W, Kennedy M, de Leer E W B, et al. Distribution and modelling of rare earth elements in Chinese river sediments[J]. Science of the Total Environment, 1997, 204(3): 233-243
    Amyot M, Clayden M G, MacMillan G A, et al. Fate and trophic transfer of rare earth elements in temperate lake food webs[J]. Environmental Science & Technology, 2017, 51(11): 6009-6017
    Gonzalez V, Vignati D A, Leyval C, et al. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry?[J]. Environment International, 2014, 71: 148-157
    Santos A C S S, Souza L A, Araujo T G, et al. Fate and trophic transfer of rare earth elements in a tropical estuarine food web[J]. Environmental Science & Technology, 2023, 57(6): 2404-2414
    Wang T, Wu Q X, Wang Z H, et al. Anthropogenic gadolinium accumulation and rare earth element anomalies of river water from the middle reach of Yangtze River Basin, China[J]. ACS Earth and Space Chemistry, 2021, 5(11): 3130-3139
    Ma L, Dang D H, Wang W, et al. Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters[J]. Environmental Pollution, 2019, 244: 190-201
    Piarulli S, Hansen B H, Ciesielski T, et al. Sources, distribution and effects of rare earth elements in the marine environment: Current knowledge and research gaps[J]. Environmental Pollution, 2021, 291: 118230
    Turner D R, Whitfield M, Dickson A G. The equilibrium speciation of dissolved components in freshwater and sea water at 25℃ and 1 atm pressure[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 855-881
    Byrne R H, Li B Q. Comparative complexation behavior of the rare earths[J]. Geochimica et Cosmochimica Acta, 1995, 59(22): 4575-4589
    Wei Z, Yin M, Zhang X, et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi Region (Southern China)[J]. Environmental Pollution, 2001, 114(3): 345-355
    Liang T, Li K X, Wang L Q. State of rare earth elements in different environmental components in mining areas of China[J]. Environmental Monitoring and Assessment, 2014, 186(3): 1499-1513
    Tang S T, Zheng C L, Chen M J, et al. Geobiochemistry characteristics of rare earth elements in soil and ground water: A case study in Baotou, China[J]. Scientific Reports, 2020, 10(1): 11740
    Li X F, Chen Z B, Chen Z Q, et al. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China[J]. Chemosphere, 2013, 93(6): 1240-1246
    Négrel P, Guerrot C, Cocherie A, et al. Rare earth elements, neodymium and strontium isotopic systematics in mineral waters: Evidence from the Massif Central, France[J]. Applied Geochemistry, 2000, 15(9): 1345-1367
    Weltje L, Heidenreich H, Zhu W Z, et al. Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands[J]. Science of the Total Environment, 2002, 286(1/3): 191-214
    Lawrence M G, Greig A, Collerson K D, et al. Direct quantification of rare earth element concentrations in natural waters by ICP-MS[J]. Applied Geochemistry, 2006, 21(5): 839-848
    Kulaksız S, Bau M. Rare earth elements in the Rhine River, Germany: First case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere[J]. Environment International, 2011, 37(5): 973-979
    Thibault de Chanvalon A, Metzger E, Mouret A, et al. Particles transformation in estuaries: Fe, Mn and REE signatures through the Loire Estuary[J]. Journal of Sea Research, 2016, 118: 103-112
    Cánovas C R, Basallote M D, Macías F. Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain)[J]. Environmental Pollution, 2020, 267: 115506
    Strakhovenko V, Belkina N, Subetto D, et al. Distribution of rare earth elements and yttrium in water, suspended matter and bottom sediments in Lake Onego: Evidence of the watershed transformation in the Late Pleistocene[J]. Quaternary International, 2023, 644: 120-133
    Akagi T, Edanami K. Sources of rare earth elements in shells and soft-tissues of bivalves from Tokyo Bay[J]. Marine Chemistry, 2017, 194: 55-62
    Rousseau T C, Sonke J E, Chmeleff J, et al. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary[J]. Nature Communications, 2015, 6: 7592
    Andrade R L B, Hatje V, Pedreira R M A, et al. REE fractionation and human Gd footprint along the continuum between Paraguaçu River to coastal South Atlantic waters[J]. Chemical Geology, 2020, 532: 119303
    Barry M J, Meehan B J. The acute and chronic toxicity of lanthanum to Daphnia carinata[J]. Chemosphere, 2000, 41(10): 1669-1674
    Weltje L, Verhoof L R C W, Verweij W, et al. Lutetium speciation and toxicity in a microbial bioassay: Testing the free-ion model for lanthanides[J]. Environmental Science & Technology, 2004, 38(24): 6597-6604
    Ma Y H, Wang J K, Peng C, et al. Toxicity of cerium and thorium on Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2016, 134P1: 226-232
    de Freitas T O P, Pedreira R M A, Hatje V. Distribution and fractionation of rare earth elements in sediments and mangrove soil profiles across an estuarine gradient[J]. Chemosphere, 2021, 264: 128431
    Shynu R, Rao V P, Parthiban G, et al. REE in suspended particulate matter and sediment of the Zuari Estuary and adjacent shelf, western India: Influence of mining and estuarine turbidity[J]. Marine Geology, 2013, 346: 326-342
    Brito P, Prego R, Mil-Homens M, et al. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus Estuary, Portugal[J]. Science of the Total Environment, 2018, 621: 317-325
    Marmolejo-Rodríguez A J, Prego R, Meyer-Willerer A, et al. Rare earth elements in iron oxy-hydroxide rich sediments from the Marabasco River-Estuary System (Pacific coast of Mexico). REE affinity with iron and aluminium[J]. Journal of Geochemical Exploration, 2007, 94(1/3): 43-51
    Verplanck P L, Taylor H E, Nordstrom D K, et al. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado[J]. Environmental Science & Technology, 2005, 39(18): 6923-6929
    Davranche M, Gruau G, Dia A, et al. Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater[J]. Aquatic Geochemistry, 2015, 21(2): 197-215
    Andersson K, Dahlqvist R, Turner D, et al. Colloidal rare earth elements in a boreal river: Changing sources and distributions during the spring flood[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3261-3274
    Marsac R, Davranche M, Gruau G, et al. An improved description of the interactions between rare earth elements and humic acids by modeling: PHREEQC-model Ⅵ coupling[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5625-5637
    De Carlo E H, Wen X Y, Irving M. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles[J]. Aquatic Geochemistry, 1997, 3(4): 357-389
    Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1): 35-47
    Song H, Shin W J, Ryu J S, et al. Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea[J]. Chemosphere, 2017, 172: 155-165
    Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143(1/4): 245-255
    Pedreira R M A, Pahnke K, Böning P, et al. Tracking hospital effluent-derived gadolinium in Atlantic coastal waters off Brazil[J]. Water Research, 2018, 145: 62-72
    Schijf J, Christy I J. Effect of Mg and Ca on the stability of the MRI contrast agent Gd-DTPA in seawater[J]. Frontiers in Marine Science, 2018, 5: 111
    Leybourne M I, Johannesson K H. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe-Mn oxyhydroxides: Fractionation, speciation, and controls over REE+Y patterns in the surface environment[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 5962-5983
    Migaszewski Z M, Gałuszka A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(5): 429-471
    Zeng J, Han G L, Yang K H. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand[J]. Journal of Cleaner Production, 2020, 265: 121898
    Louis P, Messaoudene A, Jrad H, et al. Understanding rare earth elements concentrations, anomalies and fluxes at the river basin scale: The Moselle River (France) as a case study[J]. Science of the Total Environment, 2020, 742: 140619
    Wang X Y, Jin T Z, Comblin V, et al. A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(Ⅲ) polyaza polycarboxylic MRI contrast agent[J]. Inorganic Chemistry, 1992, 31(6): 1095-1099
    Kalman F K, Woods M, Caravan P, et al. Potentiometric and relaxometric properties of a gadolinium-based MRI contrast agent for sensing tissue pH[J]. Inorganic Chemistry, 2007, 46(13): 5260-5270
    Sherry A D, Caravan P, Lenkinski R E. Primer on gadolinium chemistry[J]. Journal of Magnetic Resonance Imaging, 2009, 30(6): 1240-1248
    Borrego J, López-González N, Carro B, et al. Geochemistry of rare-earth elements in Holocene sediments of an acidic estuary: Environmental markers (Tinto River Estuary, south-western Spain)[J]. Journal of Geochemical Exploration, 2005, 86(3): 119-129
    Tang J W, Johannesson K H. Speciation of rare earth elements in natural terrestrial waters: Assessing the role of dissolved organic matter from the modeling approach[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2321-2339
    Fee J A, Gaudette H E, Lyons W B, et al. Rare-earth element distribution in Lake Tyrrell groundwaters, Victoria, Australia[J]. Chemical Geology, 1992, 96(1/2): 67-93
    Sholkovitz E R. The aquatic chemistry of rare earth elements in rivers and estuaries[J]. Aquatic Geochemistry, 1995, 1(1): 1-34
    Sholkovitz E, Szymczak R. The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems[J]. Earth and Planetary Science Letters, 2000, 179(2): 299-309
    Saha N, Webb G E, Zhao J X, et al. Spatiotemporal variation of rare earth elements from river to reef continuum aids monitoring of terrigenous sources in the Great Barrier Reef[J]. Geochimica et Cosmochimica Acta, 2021, 299: 85-112
    Sholkovitz E R. Artifacts associated with the chemical leaching of sediments for rare-earth elements[J]. Chemical Geology, 1989, 77(1): 47-51
    Sholkovitz E R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 831-845
    Chakraborty P, Raghunadh Babu P V, Sarma V V. A multi-method approach for the study of lanthanum speciation in coastal and estuarine sediments[J]. Journal of Geochemical Exploration, 2011, 110(2): 225-231
    Zhang C S, Wang L J, Zhang S, et al. Geochemistry of rare earth elements in the mainstream of the Yangtze River, China[J]. Applied Geochemistry, 1998, 13(4): 451-462
    Suja S, Fernandes L L, Rao V P. Distribution and fractionation of rare earth elements and yttrium in suspended and bottom sediments of the Kali Estuary, western India[J]. Environmental Earth Sciences, 2017, 76(4): 174
    Andersen R A, Wiger R, Daae H L, et al. Is the metal binding protein metallothionein present in the coelenterate Hydra attenuata?[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1988, 91(2): 553-557
    Quinn B, Gagné F, Blaise C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata[J]. Science of the Total Environment, 2008, 389(2/3): 306-314
    Guo Q, You W L. A comprehensive evaluation of the international competitiveness of strategic minerals in China, Australia, Russia and India: The case of rare earths[J]. Resources Policy, 2023, 85: 103821
    Kik K, Bukowska B, Sicińska P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms[J]. Environmental Pollution, 2020, 262: 114297
    Li H S, Gu Y G, Liang R Z, et al. Heavy metals in riverine/estuarine sediments from an aquaculture wetland in metropolitan areas, China: Characterization, bioavailability and probabilistic ecological risk[J]. Environmental Pollution, 2023, 324: 121370
    Moermond C T, Tijink J, van Wezel A P, et al. Distribution, speciation, and bioavailability of lanthanides in the Rhine-Meuse estuary, The Netherlands[J]. Environmental Toxicology and Chemistry, 2001, 20(9): 1916-1926
    Marginson H, MacMillan G A, Grant E, et al. Rare earth element bioaccumulation and cerium anomalies in biota from the Eastern Canadian subarctic (Nunavik)[J]. Science of the Total Environment, 2023, 879: 163024
    Lachaux N, Catrouillet C, Marsac R, et al. Implications of speciation on rare earth element toxicity: A focus on organic matter influence in Daphnia magna standard test[J]. Environmental Pollution, 2022, 307: 119554
    Lachaux N, Cossu-Leguille C, Poirier L, et al. Integrated environmental risk assessment of rare earth elements mixture on aquatic ecosystems[J]. Frontiers in Environmental Science, 2022, 10: 974191
    Tao Y, Shen L, Feng C, et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review[J]. Environmental Pollution, 2022, 298: 118540
    Holstein S E H. Clathrin and plant endocytosis[J]. Traffic, 2002, 3(9): 614-620
    Maleke M, Valverde A, Vermeulen J G, et al. Biomineralization and bioaccumulation of europium by a thermophilic metal resistant bacterium[J]. Frontiers in Microbiology, 2019, 10: 81
    Zhao C M, Wilkinson K J. Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands[J]. Environmental Science & Technology, 2015, 49(4): 2207-2214
    Hare L. Aquatic insects and trace metals: Bioavailability, bioaccumulation, and toxicity[J]. Critical Reviews in Toxicology, 1992, 22(5/6): 327-369
    Bonnail E, Pérez-López R, Sarmiento A M, et al. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea[J]. Journal of Hazardous Materials, 2017, 338: 466-471
    Liu Y, Peng Z C, Wei G J, et al. Interannual variation of rare earth element abundances in corals from northern coast of the South China Sea and its relation with sea-level change and human activities[J]. Marine Environmental Research, 2011, 71(1): 62-69
    MacMillan G A, Chételat J, Heath J P, et al. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic[J]. Environmental Science Processes & Impacts, 2017, 19(10): 1336-1345
    Souza I C, Morozesk M, Azevedo V C, et al. Trophic transfer of emerging metallic contaminants in a neotropical mangrove ecosystem food web[J]. Journal of Hazardous Materials, 2021, 408: 124424
    Dai Y B, Sun S, Li Y, et al. Residual levels and health risk assessment of rare earth elements in Chinese resident diet: A market-based investigation[J]. Science of the Total Environment, 2022, 828: 154119
    Rétif J, Zalouk-Vergnoux A, Kamari A, et al. Trophic transfer of rare earth elements in the food web of the Loire estuary (France)[J]. Science of the Total Environment, 2024, 914: 169652
    Mashitah S M, Shazili N A M, Rashid M K A. Elemental concentrations in brown seaweed, Padina sp. along the east coast of Peninsular Malaysia[J]. Aquatic Ecosystem Health & Management, 2012, 15(3): 267-278
    Goecke F, Aránguiz-Acuña A, Palacios M, et al. Latitudinal distribution of lanthanides contained in macroalgae in Chile: An inductively coupled plasma-mass spectrometric (ICP-MS) determination[J]. Journal of Applied Phycology, 2017, 29(4): 2117-2128
    Sakamoto N, Kano N, Imaizumi H. Biosorption of uranium and rare earth elements using biomass of algae[J]. Bioinorganic Chemistry and Applications, 2008, 2008: 706240
    张慧敏, 邓利, 杨俊, 等. 深圳近岸海域海洋动物稀土元素组成特征及配分模式研究[J]. 卫生研究, 2009, 38(5): 543-545

    Zhang H M, Deng L, Yang J, et al. Rare earth elements in marine organisms from Shenzhen coastal region[J]. Journal of Hygiene Research, 2009, 38(5): 543-545(in Chinese)

    Wang Z S, Yin L, Xiang H Y, et al. Accumulation patterns and species-specific characteristics of yttrium and rare earth elements (YREEs) in biological matrices from Maluan Bay, China: Implications for biomonitoring[J]. Environmental Research, 2019, 179(Pt A): 108804
    Li J X, Zheng L, Sun C J, et al. Study on ecological and chemical properties of rare earth elements in tropical marine organisms[J]. Chinese Journal of Analytical Chemistry, 2016, 44(10): 1539-1546
    Costas-Rodríguez M, Lavilla I, Bendicho C. Classification of cultivated mussels from Galicia (Northwest Spain) with European Protected Designation of Origin using trace element fingerprint and chemometric analysis[J]. Analytica Chimica Acta, 2010, 664(2): 121-128
    Fu F F, Akagi T, Yabuki S, et al. Distribution of rare earth elements in seaweed: Implication of two different sources of rare earth elements and silicon in seaweed[J]. Journal of Phycology, 2000, 36(1): 62-70
    Hou X L, Yan X J. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae[J]. Science of the Total Environment, 1998, 222(3): 141-156
    Vítová M, Čížková M, Zachleder V. Lanthanides and Algae[M] //Lanthanides. London: IntechOpen, 2019: 87-111
    Ren Q G, Hua Y, Shen H, et al. Cytochemical behavior of rare earth ions in Euglena gracilis studied by XAFS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272(2): 359-362
    Guo P, Wang J, Li X, et al. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 161: 801-807
    Ryabushko V I, Gureeva E V, Kapranov S V, et al. Rare earth elements in the red, brown, green algae and the seagrass from Kazachya Bay (Crimea, Black Sea)[J]. Regional Studies in Marine Science, 2024, 69: 103318
    Strady E, Kim I, Radakovitch O, et al. Rare earth element distributions and fractionation in plankton from the northwestern Mediterranean Sea[J]. Chemosphere, 2015, 119: 72-82
    Briant N, Savoye N, Chouvelon T, et al. Carbon and nitrogen elemental and isotopic ratios of filter-feeding bivalves along the French coasts: An assessment of specific, geographic, seasonal and multi-decadal variations[J]. Science of the Total Environment, 2018, 613/614: 196-207
    Chandurvelan R, Marsden I D, Glover C N, et al. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses[J]. Science of the Total Environment, 2015, 511: 663-675
    Rodríguez-Velarte P, Babarro J M F, Cobelo-García A. Bioaccumulation patterns of trace elements by native (M. galloprovincialis) and invasive (X. securis) mussels in coastal systems (Vigo Ria, NW Iberian Peninsula)[J]. Marine Pollution Bulletin, 2022, 176: 113463
    Wang X, Barrat J A, Bayon G, et al. Lanthanum anomalies as fingerprints of methanotrophy[J]. Geochemical Perspectives Letters, 2020, 14: 26-30
    Barrat J A, Chauvaud L, Olivier F, et al. Rare earth elements and yttrium in suspension-feeding bivalves (dog cockle, Glycymeris glycymeris L.): Accumulation, vital effects and pollution[J]. Geochimica et Cosmochimica Acta, 2022, 339: 12-21
    Merschel G, Bau M. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water[J]. Science of the Total Environment, 2015, 533: 91-101
    Le Goff S, Barrat J A, Chauvaud L, et al. Compound-specific recording of gadolinium pollution in coastal waters by great scallops[J]. Scientific Reports, 2019, 9(1): 8015
    Valdés-Vilchis S, Sánchez-Beristain F, Bernal J P, et al. Rare earth elements and yttrium (REE+Y) patterns in recent Anadara brasiliana shells from Playa Norte, Barra de Cazones (Veracruz, Mexico): Evidence of anthropogenic contamination linked to river output?[J]. Journal of South American Earth Sciences, 2021, 110: 103368
    Yang L P, Wang X N, Nie H Q, et al. Residual levels of rare earth elements in freshwater and marine fish and their health risk assessment from Shandong, China[J]. Marine Pollution Bulletin, 2016, 107(1): 393-397
    郭卫东, 胡明辉, 杨逸萍, 等. 厦门海域鱼体稀土元素的生态化学特征[J]. 海洋与湖沼, 2003, 34(3): 241-248
    Guo W D, Hu M H, Yang Y P, et al. Characteristics of ecological chemistry of rare earth elements in fish from Xiamen Bay[J]. Oceanologia et Limnologia Sinica, 2003, 34(3): 241-248 (in Chinese)
    Mayfield D B, Fairbrother A. Examination of rare earth element concentration patterns in freshwater fish tissues[J]. Chemosphere, 2015, 120: 68-74
    Squadrone S, Brizio P, Stella C, et al. Differential bioaccumulation of trace elements and rare earth elements in the muscle, kidneys, and liver of the invasive Indo-Pacific lionfish (Pterois spp.) from Cuba[J]. Biological Trace Element Research, 2020, 196(1): 262-271
    Reindl A R, Saniewska D, Grajewska A, et al. Alimentary exposure and elimination routes of rare earth elements (REE) in marine mammals from the Baltic Sea and Antarctic coast[J]. Science of the Total Environment, 2021, 754: 141947
    Nørregaard R D, Kaarsholm H, Bach L, et al. Bioaccumulation of rare earth elements in juvenile Arctic char (Salvelinus alpinus) under field experimental conditions[J]. Science of the Total Environment, 2019, 688: 529-535
    Pannetier P, Caron A, Campbell P G C, et al. A comparison of metal concentrations in the tissues of yellow American eel (Anguilla rostrata) and European eel (Anguilla anguilla)[J]. Science of the Total Environment, 2016, 569: 1435-1445
    Sun H, Wang X R, Hua Z Z, et al. Bioconcentration and elimination of five light rare earth elements in carp (Cyprinus carpio L.)[J]. Chemosphere, 1996, 33(8): 1475-1483
    Tu Q, Wang X R, Tian L Q, et al. Bioaccumulation of the rare earth elements lanthanum, gadolinium and yttrium in carp (Cyprinus carpio)[J]. Environmental Pollution, 1994, 85(3): 345-350
    Miranda D A, Benskin J P, Awad R, et al. Bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web[J]. Science of the Total Environment, 2021, 754: 142146
    Bustamante P, Miramand P. Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay[J]. Science of the Total Environment, 2005, 337(1/3): 59-73
    Reindl A R, Falkowska L. Trace elements in the muscle, ova and seminal fluid of key clupeid representatives from the Gdansk Bay (South Baltic Sea) and Iberian Peninsula (North-East Atlantic)[J]. Journal of Trace Elements in Medicine and Biology, 2021, 68: 126803
    Cardon P Y, Triffault-Bouchet G, Caron A, et al. Toxicity and subcellular fractionation of yttrium in three freshwater organisms: Daphnia magna, Chironomus riparius, and Oncorhynchus mykiss[J]. ACS Omega, 2019, 4(9): 13747-13755
    Rainbow P S. Trace metal concentrations in aquatic invertebrates: Why and so what?[J]. Environmental Pollution, 2002, 120(3): 497-507
    Gobas F A P C, Muir D C G, MacKay D. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish[J]. Chemosphere, 1988, 17(5): 943-962
    Squadrone S, Brizio P, Stella C, et al. Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy)[J]. Environmental Pollution, 2016, 215: 77-83
    Wei Y H, Zhang J Y, Zhang D W, et al. Metal concentrations in various fish organs of different fish species from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2014, 104: 182-188
    Kumar K, Saion E, Halimah M K, et al. Rare earth element (REE) in surface mangrove sediment by instrumental neutron activation analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(3): 667-676
    Beiras R, Vázquez E, Bellas J, et al. Sea-urchin embryo bioassay for in situ evaluation of the biological quality of coastal seawater[J]. Estuarine, Coastal and Shelf Science, 2001, 52(1): 29-32
    Xu X, Li Y, Wang Y, et al. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay[J]. Toxicology in Vitro, 2011, 25(1): 294-300
    Freitas R, Costa S, D Cardoso C E, et al. Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis[J]. Chemosphere, 2020, 244: 125457
    Henriques B, Coppola F, Monteiro R, et al. Toxicological assessment of anthropogenic gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis[J]. Science of the Total Environment, 2019, 664: 626-634
    Oral R, Pagano G, Siciliano A, et al. Heavy rare earth elements affect early life stages in Paracentrotus lividus and Arbacia lixula sea urchins[J]. Environmental Research, 2017, 154: 240-246
    Hanana H, Turcotte P, André C, et al. Comparative study of the effects of gadolinium chloride and gadolinium-based magnetic resonance imaging contrast agent on freshwater mussel, Dreissena polymorpha[J]. Chemosphere, 2017, 181: 197-207
    Figueiredo C, Grilo T F, Lopes C, et al. Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla)[J]. Chemosphere, 2018, 206: 414-423
    Pinto J, Costa M, Leite C, et al. Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts[J]. Aquatic Toxicology, 2019, 211: 181-192
    Dubé M, Auclair J, Hanana H, et al. Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 223: 88-95
    Wang Y J, Jin H B, Deng S H, et al. Effects of neodymium on growth and physiological characteristics of Microcystis aeruginosa[J]. Journal of Rare Earths, 2011, 29(4): 388-395
    Wu Y, Wang Y J, Du J G, et al. Effects of yttrium under lead stress on growth and physiological characteristics of Microcystis aeruginosa[J]. Journal of Rare Earths, 2016, 34(7): 747-756
    Chu W Y, Cai S J, Fu Y Y, et al. The toxicity of cerium nitrate to Elodea canadensis: Subcellular distribution, chemical forms and physiological effects[J]. Acta Physiologiae Plantarum, 2014, 36(9): 2491-2499
    González V, Vignati D A, Pons M N, et al. Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms[J]. Environmental Pollution, 2015, 199: 139-147
    Joonas E, Aruoja V, Olli K, et al. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects[J]. Science of the Total Environment, 2017, 593/594: 478-486
    Ř ezanka T, Kaineder K, Mezricky D, et al. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda[J]. Photosynthesis Research, 2016, 130(1/3): 335-346
    Martino C, Chiarelli R, Bosco L, et al. Induction of skeletal abnormalities and autophagy in Paracentrotus lividus sea urchin embryos exposed to gadolinium[J]. Marine Environmental Research, 2017, 130: 12-20
    Martino C, Costa C, Roccheri M C, et al. Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species[J]. Aquatic Toxicology, 2018, 194: 57-66
    Trifuoggi M, Pagano G, Guida M, et al. Comparative toxicity of seven rare earth elements in sea urchin early life stages[J]. Environmental Science and Pollution Research International, 2017, 24(25): 20803-20810
    Oral R, Bustamante P, Warnau M, et al. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos[J]. Chemosphere, 2010, 81(2): 194-198
    Pagano G, Guida M, Tommasi F, et al. Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects[J]. Ecotoxicology and Environmental Safety, 2015, 115: 40-48
    Flik G, Verbost P M, Bonga S E W. Calcium Transport Processes in Fishes[M] //Fish Physiology. Amsterdam: Elsevier, 1995: 317-342
    Atli G, Canli M. Alterations in ion levels of freshwater fish Oreochromis niloticus following acute and chronic exposures to five heavy metals[J]. Turkish Journal of Zoology, 2011, 35(5): 725-736
    Gobi N, Vaseeharan B, Rekha R, et al. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus[J]. Ecotoxicology and Environmental Safety, 2018, 162: 147-159
    Pastorino P, Pizzul E, Barceló D, et al. Ecology of oxidative stress in the Danube barbel (Barbus balcanicus) from a winegrowing district: Effects of water parameters, trace and rare earth elements on biochemical biomarkers[J]. Science of the Total Environment, 2021, 772: 145034
    Hua D, Wang J W, Yu D H, et al. Lanthanum exerts acute toxicity and histopathological changes in gill and liver tissue of rare minnow (Gobiocypris rarus)[J]. Ecotoxicology, 2017, 26(9): 1207-1215
    Evans C H. Interesting and useful biochemical properties of lanthanides[J]. Trends in Biochemical Sciences, 1983, 8(12): 445-449
    Lortholarie M, Poirier L, Kamari A, et al. Rare earth element organotropism in European eel (Anguilla anguilla)[J]. Science of the Total Environment, 2021, 766: 142513
    Aharchaou I, Beaubien C, Campbell P G C, et al. Lanthanum and cerium toxicity to the freshwater green alga Chlorella fusca: Applicability of the biotic ligand model[J]. Environmental Toxicology and Chemistry, 2020, 39(5): 996-1005
    Åström M E, Österholm P, Gustafsson J P, et al. Attenuation of rare earth elements in a boreal estuary[J]. Geochimica et Cosmochimica Acta, 2012, 96: 105-119
    Wang Y, Zhang M, Wang X. Population growth responses of Tetrahymena shanghaiensis in exposure to rare earth elements[J]. Biological Trace Element Research, 2000, 75(1/3): 265-275
    Mestre N C, Sousa V S, Rocha T L, et al. Ecotoxicity of rare earths in the marine mussel Mytilus galloprovincialis and a preliminary approach to assess environmental risk[J]. Ecotoxicology, 2019, 28(3): 294-301
    Piarulli S, Riedel J A, Fossum F N, et al. Effects of gadolinium (Gd) and a Gd-based contrast agent (GBCA) on early life stages of zebrafish (Danio rerio)[J]. Chemosphere, 2024, 350: 140950
    Tai P D, Zhao Q, Su D, et al. Biological toxicity of lanthanide elements on algae[J]. Chemosphere, 2010, 80(9): 1031-1035
    Blinova I, Vija H, Lukjanova A, et al. Assessment of the hazard of nine (doped) lanthanides-based ceramic oxides to four aquatic species[J]. Science of the Total Environment, 2018, 612: 1171-1176
    Blinova I, Muna M, Heinlaan M, et al. Potential hazard of lanthanides and lanthanide-based nanoparticles to aquatic ecosystems: Data gaps, challenges and future research needs derived from bibliometric analysis[J]. Nanomaterials, 2020, 10(2): 328
    Vukov O, Smith D S, McGeer J C. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach[J]. Aquatic Toxicology, 2016, 170: 142-151
    Blinova I, Lukjanova A, Muna M, et al. Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans[J]. Science of the Total Environment, 2018, 642: 1100-1107
    Borgmann U, Couillard Y, Doyle P, et al. Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness[J]. Environmental Toxicology and Chemistry, 2005, 24(3): 641-652
    Loveridge A, Smith D S, McGeer J C. Dissolved organic matter mitigates the acute toxicity of thulium to Hyalella azteca but Ca, Mg and Na do not[J]. Archives of Environmental Contamination and Toxicology, 2021, 81(4): 637-647
    Wang M J, Wang W X. Cadmium in three marine phytoplankton: Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107
    Hu G R, Lin C Q, Yang Q L, et al. Distribution and source appointment of rare earth elements in offshore sediments of Western Xiamen Bay, Southeast China[J]. Journal of Geochemical Exploration, 2019, 201: 31-39
    Arienzo M, Ferrara L, Trifuoggi M, et al. Advances in the fate of rare earth elements, REE, in transitional environments: Coasts and estuaries[J]. Water, 2022, 14(3): 401
  • 加载中
计量
  • 文章访问数:  254
  • HTML全文浏览数:  254
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-07-23
邓云诚, 赵春梅, 范文宏, 汤叶涛, 仇荣亮. 稀土元素在水环境中的生物有效性和毒性研究进展[J]. 生态毒理学报, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001
引用本文: 邓云诚, 赵春梅, 范文宏, 汤叶涛, 仇荣亮. 稀土元素在水环境中的生物有效性和毒性研究进展[J]. 生态毒理学报, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001
DENG Yuncheng, ZHAO Chunmei, FAN Wenhong, TANG Yetao, QIU Rongliang. Research Progresses on the Bioavailability and Toxicity of Rare Earth Elements towards Aquatic Organisms[J]. Asian journal of ecotoxicology, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001
Citation: DENG Yuncheng, ZHAO Chunmei, FAN Wenhong, TANG Yetao, QIU Rongliang. Research Progresses on the Bioavailability and Toxicity of Rare Earth Elements towards Aquatic Organisms[J]. Asian journal of ecotoxicology, 2024, 19(6): 226-246. doi: 10.7524/AJE.1673-5897.20240723001

稀土元素在水环境中的生物有效性和毒性研究进展

    通讯作者: 赵春梅(1984-),女,博士,副教授,主要研究方向为生态毒理学。E-mail:zhaochm3@mail.sysu.edu.cn; 
    作者简介: 邓云诚(2001—),男,硕士研究生,研究方向为稀土元素的生物有效性,E-mail:dengych33@mail2.sysu.edu.cn
  • 1. 中山大学环境科学与工程学院, 广州 510006;
  • 2. 北京航空航天大学空间与环境学院, 北京 102206
基金项目:

国家自然科学基金面上项目(42077362)

摘要: 稀土元素(rare earth elements, REEs)已广泛应用于高科技和清洁生产等领域,并可能通过生产和使用等环节进入水生生态系统。水环境中的REEs可以是自由离子态,或与配体形成络合物,也可以作为胶体留在水相中。REEs可以被水生生物吸收,或吸附在其表面,并通过食物链进行传递,对水生生物或人体造成潜在风险。本文概述了国内外部分水环境中REEs的环境浓度、赋存形态和分布,及其影响因素,总结了目前水环境中REEs在不同营养水平的生物累积和食物链传递规律,阐述了REEs在分子、细胞、器官和个体水平下所产生的毒性和致毒机理,及影响其毒性的生物和非生物因素,并对今后REEs的生物有效性和毒性研究进行展望。

English Abstract

参考文献 (175)

返回顶部

目录

/

返回文章
返回