微塑料与激素类药物的环境赋存、相互作用及对鱼类生殖和发育的联合毒性效应研究进展

王贤珍, 刘少贞. 微塑料与激素类药物的环境赋存、相互作用及对鱼类生殖和发育的联合毒性效应研究进展[J]. 生态毒理学报, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003
引用本文: 王贤珍, 刘少贞. 微塑料与激素类药物的环境赋存、相互作用及对鱼类生殖和发育的联合毒性效应研究进展[J]. 生态毒理学报, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003
WANG Xianzhen, LIU Shaozhen. Advances on Combined Toxic Effects of Microplastics and Hormone Drug Residues on Environmental Occurrence, Interaction, Fish Reproduction and Development: A Review[J]. Asian journal of ecotoxicology, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003
Citation: WANG Xianzhen, LIU Shaozhen. Advances on Combined Toxic Effects of Microplastics and Hormone Drug Residues on Environmental Occurrence, Interaction, Fish Reproduction and Development: A Review[J]. Asian journal of ecotoxicology, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003

微塑料与激素类药物的环境赋存、相互作用及对鱼类生殖和发育的联合毒性效应研究进展

    作者简介: 王贤珍(1969—),女,本科,高级工程师,研究方向为水域生态学,E-mail:1258066167@qq.com
    通讯作者: 刘少贞(1983-),女,博士,教授,主要研究方向为水域生态毒理学。E-mail:shzliu@sxau.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(31600416);山西省自然科学基金资助项目(2021030221224136)

  • 中图分类号: X171.5

Advances on Combined Toxic Effects of Microplastics and Hormone Drug Residues on Environmental Occurrence, Interaction, Fish Reproduction and Development: A Review

    Corresponding author: LIU Shaozhen, shzliu@sxau.edu.cn
  • Fund Project:
  • 摘要: 在全球范围内,每年有大量的微塑料(microplastics, MPs)和激素类药物残留(hormone drug residues, HDR)被排放到水体中,对水生生物的生存造成威胁。更严重的是,由于MPs和HDR广泛的存在于水体中,形成复合污染物,加重了对水生生物的负面影响。鱼类作为生态系统中重要的组成部分,也面临着这些有害物质的威胁,主要体现在影响其生殖和发育。本文系统地分析了MPs和HDR在全球水体的分布状况,并对二者对鱼类生殖和发育联合毒性作用的相关研究进行了综述。此外,本文对目前研究存在的不足进行了论述并提出了相关的研究建议,以期为更好地研究MPs和HDR的环境风险提供参考。
  • 加载中
  • Laskar N, Kumar U. Plastics and microplastics: A threat to environment[J]. Environmental Technology & Innovation, 2019, 14: 100352
    da Costa J P, Avellan A, Mouneyrac C, et al. Plastic additives and microplastics as emerging contaminants: Mechanisms and analytical assessment[J]. TrAC Trends in Analytical Chemistry, 2023, 158: 116898
    Foley C J, Feiner Z S, Malinich T D, et al. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates[J]. Science of the Total Environment, 2018, 631/632: 550-559
    Wang J, Li X, Gao M, et al. Polystyrene microplastics increase estrogenic effects of 17α-ethynylestradiol on male marine medaka (Oryzias melastigma)[J]. Chemosphere, 2022, 287(Pt 3): 132312
    Varticovski L, Stavreva D A, McGowan A, et al. Endocrine disruptors of sex hormone activities[J]. Molecular and Cellular Endocrinology, 2022, 539: 111415
    Vos J G, Dybing E, Greim H A, et al. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation[J]. Critical Reviews in Toxicology, 2000, 30(1): 71-133
    Patterson J, Jeyasanta K I, Sathish N, et al. Profiling microplastics in the Indian edible oyster, Magallana bilineata collected from the Tuticorin coast, Gulf of Mannar, Southeastern India[J]. Science of the Total Environment, 2019, 691: 727-735
    van Cauwenberghe L, Claessens M, Vandegehuchte M B, et al. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats[J]. Environmental Pollution, 2015, 199: 10-17
    Desforges J P, Galbraith M, Dangerfield N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79(1/2): 94-99
    Zhao S Y, Zhu L X, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary system, China: First observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568
    Hu L L, Chernick M, Hinton D E, et al. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China[J]. Environmental Science & Technology, 2018, 52(15): 8885-8893
    Tsang Y Y, Mak C W, Liebich C, et al. Microplastic pollution in the marine waters and sediments of Hong Kong[J]. Marine Pollution Bulletin, 2017, 115(1/2): 20-28
    Tang G W, Liu M Y, Zhou Q, et al. Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts[J]. Science of the Total Environment, 2018, 634: 811-820
    Zhang W W, Zhang S F, Wang J Y, et al. Microplastic pollution in the surface waters of the Bohai Sea, China[J]. Environmental Pollution, 2017, 231(Pt 1): 541-548
    Sun X X, Liang J H, Zhu M L, et al. Microplastics in seawater and zooplankton from the Yellow Sea[J]. Environmental Pollution, 2018, 242(Pt A): 585-595
    Sun Y C, Cao L, Wang Y T, et al. Sources and distribution of microplastics in the East China Sea under a three-dimensional numerical modelling[J]. Environmental Pollution, 2022, 311: 119910
    Wang T, Zou X Q, Li B J, et al. Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example[J]. Environmental Pollution, 2019, 245: 965-974
    Sevwandi Dharmadasa W L S, Andrady A L, Kumara P B T P, et al. Microplastic pollution in marine protected areas of southern Sri Lanka[J]. Marine Pollution Bulletin, 2021, 168: 112462
    Peng X, Chen M, Chen S, et al. Microplastics contaminate the deepest part of the world’s ocean[J]. Geochemical Perspectives Letters, 2018, 2018: 1-5
    Xiong X, Zhang K, Chen X C, et al. Sources and distribution of microplastics in China’s largest inland lake—Qinghai Lake[J]. Environmental Pollution, 2018, 235: 899-906
    Wang Z C, Qin Y M, Li W P, et al. Microplastic contamination in freshwater: First observation in Lake Ulansuhai, Yellow River Basin, China[J]. Environmental Chemistry Letters, 2019, 17(4): 1821-1830
    Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616/617: 1620-1627
    Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187
    Mao R F, Hu Y Y, Zhang S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, Northern China[J]. Science of the Total Environment, 2020, 723: 137820
    Karnaukhov D, Silow E, Biritskaya S, et al. Pollution by macro-and microplastic of large lacustrine ecosystems in Eastern Asia[J]. Pollution Research, 2020, 39(2): 353-355
    de Jesús Negrete Velasco A, Rard L, Blois W, et al. Microplastic and fibre contamination in a remote mountain lake in Switzerland[J]. Water, 2020, 12(9): 2410
    Uurasjärvi E, Hartikainen S, Setälä O, et al. Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake[J]. Water Environment Research, 2020, 92(1): 149-156
    Eriksen M, Mason S, Wilson S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1/2): 177-182
    Mason S A, Kammin L, Eriksen M, et al. Pelagic plastic pollution within the surface waters of Lake Michigan, USA[J]. Journal of Great Lakes Research, 2016, 42(4): 753-759
    Mason S A, Daily J, Aleid G, et al. High levels of pelagic plastic pollution within the surface waters of Lakes Erie and Ontario[J]. Journal of Great Lakes Research, 2020, 46(2): 277-288
    Park T J, Lee S H, Lee M S, et al. Occurrence of microplastics in the Han River and riverine fish in South Korea[J]. Science of the Total Environment, 2020, 708: 134535
    Ma J L, Niu X J, Zhang D Q, et al. High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China[J]. Science of the Total Environment, 2020, 744: 140679
    Lyu W W, Zhou W Z, Lu S B, et al. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652: 1209-1218
    Zhang D D, Fraser M A, Huang W, et al. Microplastic pollution in water, sediment, and specific tissues of crayfish (Procambarus clarkii) within two different breeding modes in Jianli, Hubei Province, China[J]. Environmental Pollution, 2021, 272: 115939
    Zhang D D, Cui Y Z, Zhou H H, et al. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China[J]. Science of the Total Environment, 2020, 703: 134768
    Ding J F, Jiang F H, Li J X, et al. Microplastics in the coral reef systems from Xisha Islands of South China Sea[J]. Environmental Science & Technology, 2019, 53(14): 8036-8046
    Zheng Y F, Li J X, Cao W, et al. Distribution characteristics of microplastics in the seawater and sediment: A case study in Jiaozhou Bay, China[J]. Science of the Total Environment, 2019, 674: 27-35
    Wang T, Hu M H, Song L L, et al. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China[J]. Environmental Pollution, 2020, 266(Pt 2): 115137
    Chen M L, Jin M, Tao P R, et al. Assessment of microplastics derived from mariculture in Xiangshan Bay, China[J]. Environmental Pollution, 2018, 242(Pt B): 1146-1156
    Olivatto G P, Martins M C T, Montagner C C, et al. Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil[J]. Marine Pollution Bulletin, 2019, 139: 157-162
    Lima A R, Barletta M, Costa M F, et al. Changes in the composition of ichthyoplankton assemblage and plastic debris in mangrove creeks relative to moon phases[J]. Journal of Fish Biology, 2016, 89(1): 619-640
    Pazos R S, Bauer D E, Gómez N. Microplastics integrating the coastal planktonic community in the inner zone of the Río de la Plata estuary (South America)[J]. Environmental Pollution, 2018, 243: 134-142
    Courtene-Jones W, Quinn B, Gary S F, et al. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean[J]. Environmental Pollution, 2017, 231(Pt 1): 271-280
    Kanhai D K, Gårdfeldt K, Lyashevska O, et al. Microplastics in sub-surface waters of the Arctic Central Basin[J]. Marine Pollution Bulletin, 2018, 130: 8-18
    Free C M, Jensen O P, Mason S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake[J]. Marine Pollution Bulletin, 2014, 85(1): 156-163
    Il’ina O V, Kolobov M Y, Il’inskii V V. Plastic pollution of the coastal surface water in the middle and southern Baikal[J]. Water Resources, 2021, 48(1): 56-64
    Alfonso M B, Scordo F, Seitz C, et al. First evidence of microplastics in nine lakes across Patagonia (South America)[J]. Science of the Total Environment, 2020, 733: 139385
    Wang W F, Ndungu A W, Li Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1369-1374
    Fischer E K, Paglialonga L, Czech E, et al. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (Central Italy)[J]. Environmental Pollution, 2016, 213: 648-657
    Ta A T, Babel S. Microplastics pollution with heavy metals in the aquaculture zone of the Chao Phraya River Estuary, Thailand[J]. Marine Pollution Bulletin, 2020, 161: 111747
    Garcés-Ordóñez O, Saldarriaga-Vélez J F, Espinosa-Díaz L F, et al. Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean[J]. Science of the Total Environment, 2022, 829: 154643
    Gardon T, ElRakwe M, Paul-Pont I, et al. Microplastics contamination in pearl-farming lagoons of French Polynesia[J]. Journal of Hazardous Materials, 2021, 419: 126396
    Zhong R Y, Zou H Y, Gao J, et al. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China[J]. Science of the Total Environment, 2021, 786: 147452
    Kumar V, Johnson A C, Nakada N, et al. De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water[J]. Journal of Hazardous Materials, 2012, 227/228: 49-54
    Nazifa T H, Kristanti R A, Ike M, et al. Occurrence and distribution of estrogenic chemicals in river waters of Malaysia[J]. Toxicology and Environmental Health Sciences, 2020, 12(1): 65-74
    Sacdal R, Madriaga J, Espino M P. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia[J]. Environmental Research, 2020, 182: 109091
    Anderson P D, Johnson A C, Pfeiffer D, et al. Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of U.S. surface waters[J]. Environmental Toxicology and Chemistry, 2012, 31(6): 1407-1415
    Goeury K, Munoz G, Vo Duy S, et al. Occurrence and seasonal distribution of steroid hormones and bisphenol A in surface waters and suspended sediments of Quebec, Canada[J]. Environmental Advances, 2022, 8: 100199
    Andrási N, Molnár B, Dobos B, et al. Determination of steroids in the dissolved and in the suspended phases of wastewater and Danube River samples by gas chromatography, tandem mass spectrometry[J].Talanta, 2013, 115: 367-373
    García-Cambero J P, Corpa C, Lucena M A, et al. Presence of diclofenac, estradiol, and ethinylestradiol in Manzanares River (Spain) and their toxicity to zebrafish embryo development[J]. Environmental Science and Pollution Research International, 2021, 28(36): 49921-49935
    Peña-Guzmán C, Ulloa-Sánchez S, Mora K, et al. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature[J]. Journal of Environmental Management, 2019, 237: 408-423
    Madikizela L M, Ncube S, Chimuka L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status[J]. Journal of Environmental Management, 2020, 253: 109741
    Lu S, Lin C Y, Lei K, et al. Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants[J]. Environmental Pollution, 2021, 287: 117588
    Deich C, Frazão H C, Appelt J S, et al. Occurrence and distribution of estrogenic substances in the northern South China Sea[J]. Science of the Total Environment, 2021, 770: 145239
    Reichert G, Hilgert S, Fuchs S, et al. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America[J]. Environmental Pollution, 2019, 255(Pt 1): 113140
    Jurado A, Walther M, Díaz-Cruz M S. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain[J]. Science of the Total Environment, 2019, 663: 285-296
    Chen X C. Transport and transformation of steroid estrogens in soil-plant systems and their toxicological effects on plant[J]. ActaEcologica Sinica, 2021, 41(6): 2525-2535
    Bao Y F, Huang W P, Hu X L, et al. Distribution of 31 endocrine-disrupting compounds in the Taihu Lake and application of the fish plasma model[J]. Environmental Sciences Europe, 2020, 32(1): 80
    Bartelt-Hunt S, Snow D D, Damon-Powell T. World Environmental and Water Resources Congress 2010: Challenges of Change[C]. Providence: Environmental and Water Resources Institute of ASCE, 2010: 1052-1061
    Ben W W, Zhu B, Yuan X J, et al. Transformation and fate of natural estrogens and their conjugates in wastewater treatment plants: Influence of operational parameters and removal pathways[J]. Water Research, 2017, 124: 244-250
    Kumar V, Nakada N, Yamashita N, et al. Influence of hydraulic retention time, sludge retention time, and ozonation on the removal of free and conjugated estrogens in Japanese activated sludge treatment plants[J]. CLEAN - Soil, Air, Water, 2015, 43(9): 1289-1294
    Kumar V, Nakada N,Yasojima M, et al. The arrival and discharge of conjugated estrogens from a range of different sewage treatment plants in the UK[J]. Chemosphere, 2011, 82(8): 1124-1128
    Tahar A, Tiedeken E J, Rowan N J. Occurrence and geodatabase mapping of three contaminants of emerging concern in receiving water and at effluent from waste water treatment plants—A first overview of the situation in the Republic of Ireland[J]. Science of the Total Environment, 2018, 616: 187-197
    Schröder P, Helmreich B, Škrbić B, et al. Status of hormones and painkillers in wastewater effluents across several European states—Considerations for the EU watch list concerning estradiols and diclofenac[J]. Environmental Science and Pollution Research International, 2016, 23(13): 12835-12866
    Zhou S B, Di Paolo C, Wu X D, et al. Optimization of screening-level risk assessment and priority selection of emerging pollutants—The case of pharmaceuticals in European surface waters[J]. Environment International, 2019, 128: 1-10
    Meffe R, de Bustamante I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy[J]. Science of the Total Environment, 2014, 481: 280-295
    Deich C, Kanwischer M, Jähne M, et al. Patterns of estrogenic activity in the Baltic Sea[J]. Chemosphere, 2020, 240: 124870
    Benotti M J, Trenholm R A, Vanderford B J, et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water[J]. Environmental Science & Technology, 2009, 43(3): 597-603
    Gwenzi W, Chaukura N. Organic contaminants in African aquatic systems: Current knowledge, health risks, and future research directions[J]. Science of the Total Environment, 2018, 619/620: 1493-1514
    Wang T, Wang L, Chen Q Q, et al. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport[J]. Science of the Total Environment, 2020, 748: 142427
    Yu Y M, Mo W Y, Luukkonen T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics—A review[J]. Science of the Total Environment, 2021, 797: 149140
    Fu L N, Li J, Wang G Y, et al. Adsorption behavior of organic pollutants on microplastics[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112207
    Zuo L Z, Li H X, Lin L, et al. Sorption and desorption of phenanthrene on biodegradablepoly(butylene adipate co-terephtalate) microplastics[J]. Chemosphere, 2019, 215: 25-32
    Wang W F, Wang J. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment[J]. Ecotoxicology and Environmental Safety, 2018, 147: 648-655
    Prajapati A, Narayan Vaidya A, Kumar A R. Microplastic properties and their interaction with hydrophobic organic contaminants: A review[J]. Environmental Science and Pollution Research International, 2022, 29(33): 49490-49512
    Li M, Yu H Y, Wang Y F, et al. QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene[J]. Scientific Reports, 2020, 10(1): 14597
    Llorca M, Schirinzi G, Martínez M, et al. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions[J]. Environmental Pollution, 2018, 235: 680-691
    Tourinho P S, Kočí V, Loureiro S, et al. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation[J]. Environmental Pollution, 2019, 252(Pt B): 1246-1256
    Hüffer T, Hofmann T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environmental Pollution, 2016, 214: 194-201
    Liu F F, Liu G Z, Zhu Z L, et al. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry[J]. Chemosphere, 2019, 214: 688-694
    Zhao L F, Rong L L, Xu J P, et al. Sorption of five organic compounds by polar and nonpolar microplastics[J]. Chemosphere, 2020, 257: 127206
    Zhu L Z, Chen B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water[J]. Environmental Science & Technology, 2000, 34(14): 2997-3002
    Liu G Z, Zhu Z L, Yang Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246: 26-33
    Wang Z, Chen M L, Zhang L W, et al. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, Southeastern China[J]. Science of the Total Environment, 2018, 628/629: 1617-1626
    Yu F, Yang C F, Zhu Z L, et al. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment[J]. Science of the Total Environment, 2019, 694: 133643
    Razanajatovo R M, Ding J N, Zhang S S, et al. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics[J]. Marine Pollution Bulletin, 2018, 136: 516-523
    Li J, Zhang K N, Zhang H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 2018, 237: 460-467
    Fred-Ahmadu O H, Ayejuyo O O, Benson N U. Dataset on microplastics and associated trace metals and phthalate esters in sandy beaches of tropical Atlantic ecosystems, Nigeria[J]. Data in Brief, 2020, 31: 105755
    Torres F G, Dioses-Salinas D C, Pizarro-Ortega C I, et al. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends[J]. Science of the Total Environment, 2021, 757: 143875
    Funari R A Jr, Frescura L M, de Menezes B B, et al. Adsorption of naphthalene and its derivatives onto high-density polyethylene microplastic: Computational, isotherm, thermodynamic, and kinetic study[J]. Environmental Pollution, 2023, 318: 120919
    Yu H D, Yang B,Waigi M G, et al. The effects of functional groups on the sorption of naphthalene on microplastics[J]. Chemosphere, 2020, 261: 127592
    Wang F, Shih K M, Li X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics[J]. Chemosphere, 2015, 119: 841-847
    Guo X T, Pang J W, Chen S Y, et al. Sorption properties of tylosin on four different microplastics[J]. Chemosphere, 2018, 209: 240-245
    Wu P F, Cai Z W, Jin H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 2019, 650(Pt 1): 671-678
    Xu B L, Liu F, Brookes P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter[J]. Environmental Pollution, 2018, 240: 87-94
    Atugoda T, Wijesekara H, Werellagama D R I B, et al. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water[J]. Environmental Technology & Innovation, 2020, 19: 100971
    Puckowski A, Cwięk W, Mioduszewska K, et al. Sorption of pharmaceuticals on the surface of microplastics[J]. Chemosphere, 2021, 263: 127976
    Wang Y H, Yang Y N, Liu X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity[J]. Environmental Science & Technology, 2021, 55(23): 15579-15595
    Bakir A, Rowland S J, Thompson R C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment[J]. Marine Pollution Bulletin, 2012, 64(12): 2782-2789
    Li Y D, Li M, Li Z, et al. Effects of particle size and solution chemistry on triclosan sorption on polystyrene microplastic[J]. Chemosphere, 2019, 231: 308-314
    Endo S, Droge S T J, Goss K U. Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction[J]. Analytical Chemistry, 2011, 83(4): 1394-1400
    Endo S, Koelmans A A. Sorption of Hydrophobic Organic Compounds to Plastics in the Marine Environment: Equilibrium[M]//The Handbook of Environmental Chemistry. Cham: Springer International Publishing, 2016: 185-204
    Guo X Y, Wang X L, Zhou X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13): 7252-7259
    Guo X, Chen C, Wang J L. Sorption of sulfamethoxazole onto six types of microplastics[J]. Chemosphere, 2019, 228: 300-308
    Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez J J. Analysis of microplastics-sorbed endocrine-disrupting compounds in pellets and microplastic fragments from beaches[J]. Microchemical Journal, 2021, 171: 106834
    Jiang H, Liu X, Sun J X, et al. Adsorption and desorption behavior of 17α-ethinyl estradiol on microplastics[J]. China Environmental Science, 2021, 41(5): 2258-2267
    蒋晖, 刘秀丽, 孙姣霞, 等. BPA和EE2在PA微塑料上竞争吸附的位点能量[J]. 中国环境科学, 2021, 41(12): 5736-5746

    Jiang H, Liu X L, Sun J X, et al. Competitive adsorption characteristics of BPA and EE2 on PA microplastics by site energy distribution theory[J]. China Environmental Science, 2021, 41(12): 5736-5746(in Chinese)

    底明晓. 长江流域河型水库微塑料污染特征及微塑料与雌二醇的吸附动力学研究[D]. 北京: 中国科学院大学, 2019: 45-55 Di X M. A study on microplastic pollution in river-style reservoirs of the Yangtze River Basin and adsorption behavior of estradiol onto microplastics[D]. Beijing: University of Chinese Academy of Sciences, 2019: 45

    -55(in Chinese)

    Karapanagioti H K, Klontza I. Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on Lesvos island beaches (Greece)[J]. Marine Environmental Research, 2008, 65(4): 283-290
    Pascall M A, Zabik M E, Zabik M J, et al. Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films[J]. Journal of Agricultural and Food Chemistry, 2005, 53(1): 164-169
    Lu J, Wu J, Wu J, et al. Adsorption and desorption of steroid hormones by microplastics in seawater[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 730-735
    Al-Jandal N, AlKhubaizi A, Saeed T, et al. Potential adsorption affinity of estrogens on LDPE and PET microplastics exposed to wastewater treatment plant effluents[J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 16027
    Phuong N N, Zalouk-Vergnoux A, Duong T T, et al. Sorption of alkylphenols and estrogens on microplastics in marine conditions[J]. Open Chemistry, 2023, 21(1): 20220315
    Lara L Z, Bertoldi C, Alves N M, et al. Sorption of endocrine disrupting compounds onto polyamide microplastics under different environmental conditions:Behaviour and mechanism[J]. Science of the Total Environment, 2021, 796: 148983
    Wu J, Lu J, Wu J. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Frontiers of Environmental Science & Engineering, 2021, 16(8): 104
    Siri C, Liu Y, Masset T, et al. Adsorption of progesterone onto microplastics and its desorption in simulated gastric and intestinal fluids[J]. Environmental Science Processes & Impacts, 2021, 23(10): 1566-1577
    Zambrano M G G, Yoon S G, Lee J Y, et al. Effect of aging on polyethylene microfiber surface properties and its consequence on adsorption characteristics of 17alpha-ethynylestradiol[J]. Science Progress, 2023, 106(2): 368504231173835
    Fonseca V F, Lara L Z, Bertoldi C F, et al. Polyamide Microplastics as Endocrine Disruptors: A Study about the Influence of Photodegradation and Sorption Mechanisms under Distinct Environmental Context[M]//Microplastics and Pollutants. Cham: Springer Nature Switzerland, 2024: 149-172
    Liu X M, Xu J, Zhao Y P, et al. Hydrophobic sorption behaviors of 17β-estradiol on environmental microplastics[J]. Chemosphere, 2019, 226: 726-735
    Leng Y F, Wang W, Cai H P, et al. Sorption kinetics, isotherms and molecular dynamics simulation of 17β-estradiol onto microplastics[J]. Science of the Total Environment, 2023, 858(Pt 3): 159803
    Jiang H, Li Q Y, Sun J X, et al. Studies on competitive adsorption characteristics of bisphenol A and 17α-ethinylestradiol on thermoplastic polyurethane by site energy distribution theory[J]. Environmental Geochemistry and Health, 2023, 45(7): 5181-5194
    Cortés-Arriagada D, Ortega D E, Miranda-Rojas S. Mechanistic insights into the adsorption of endocrine disruptors onto polystyrene microplastics in water[J]. Environmental Pollution, 2023, 319: 121017
    Feng Z H, Zhang T, Li Y, et al. The accumulation of microplastics in fish from an important fish farm and mariculture area, Haizhou Bay, China[J]. Science of the Total Environment, 2019, 696: 133948
    Yan Z, Xu L M, Zhang W M, et al. Comparative toxic effects of microplastics and nanoplastics on Chlamydomonas reinhardtii: Growth inhibition, oxidative stress, and cell morphology[J]. Journal of Water Process Engineering, 2021, 43: 102291
    Bakir A, Rowland S J, Thompson R C. Transport of persistent organic pollutants by microplastics in estuarine conditions[J]. Estuarine, Coastal and Shelf Science, 2014, 140: 14-21
    Ašmonaiteė G, Tivefälth M, Westberg E, et al. Microplastics as a vector for exposure to hydrophobic organic chemicals in fish: A comparison of two polymers and silica particles spiked with three model compounds[J]. Frontiers in Environmental Science, 2020, 8: 87
    Bakir A, Rowland S J, Thompson R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185: 16-23
    Zhang S S, Ding J N, Razanajatovo R M, et al. Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus)[J]. Science of the Total Environment, 2019, 648: 1431-1439
    Zhu Z L, Wang S C, Zhao F F, et al. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum[J]. Environmental Pollution, 2019, 246: 509-517
    Li Y J, Wang J, Yang G X, et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma)[J]. Journal of Hazardous Materials, 2020, 385: 121586
    Rainieri S,Conlledo N, Larsen B K, et al. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)[J]. Environmental Research, 2018, 162: 135-143
    Xia Y R, Niu S P, Yu J H. Microplastics as vectors of organic pollutants in aquatic environment: A review on mechanisms, numerical models, and influencing factors[J]. Science of the Total Environment, 2023, 887: 164008
    Sleight V A, Bakir A, Thompson R C, et al. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish[J]. Marine Pollution Bulletin, 2017, 116(1/2): 291-297
    Chen Q Q, Gundlach M, Yang S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of the Total Environment, 2017, 584/585: 1022-1031
    Lin X Y, Wang Y N, Yang X H, et al. Endocrine disrupting effect and reproductive toxicity of the separate exposure and co-exposure of nano-polystyrene and diethylstilbestrol to zebrafish[J]. Science of the Total Environment, 2023, 865: 161100
    Rong W Y, Chen Y, Xiong Z J, et al. Effects of combined exposure to polystyrene microplastics and 17α-methyltestosterone on the reproductive system of zebrafish[J]. Theriogenology, 2024, 215: 158-169
    Wang Q J, Zuo Z H, Zhang C N, et al. An effect assessment of microplastics and nanoplastics interacting with androstenedione on mosquitofish (Gambusia affinis)[J]. Marine Environmental Research, 2023, 189: 106062
    Carter G, Ward J. Independent and synergistic effects of microplastics and endocrine-disrupting chemicals on the reproductive social behavior of fathead minnows (Pimephales promelas)[J]. Ecology and Evolution, 2024, 14(2): e10846
  • 加载中
计量
  • 文章访问数:  254
  • HTML全文浏览数:  254
  • PDF下载数:  62
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-07-12
王贤珍, 刘少贞. 微塑料与激素类药物的环境赋存、相互作用及对鱼类生殖和发育的联合毒性效应研究进展[J]. 生态毒理学报, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003
引用本文: 王贤珍, 刘少贞. 微塑料与激素类药物的环境赋存、相互作用及对鱼类生殖和发育的联合毒性效应研究进展[J]. 生态毒理学报, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003
WANG Xianzhen, LIU Shaozhen. Advances on Combined Toxic Effects of Microplastics and Hormone Drug Residues on Environmental Occurrence, Interaction, Fish Reproduction and Development: A Review[J]. Asian journal of ecotoxicology, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003
Citation: WANG Xianzhen, LIU Shaozhen. Advances on Combined Toxic Effects of Microplastics and Hormone Drug Residues on Environmental Occurrence, Interaction, Fish Reproduction and Development: A Review[J]. Asian journal of ecotoxicology, 2024, 19(6): 208-225. doi: 10.7524/AJE.1673-5897.20240712003

微塑料与激素类药物的环境赋存、相互作用及对鱼类生殖和发育的联合毒性效应研究进展

    通讯作者: 刘少贞(1983-),女,博士,教授,主要研究方向为水域生态毒理学。E-mail:shzliu@sxau.edu.cn
    作者简介: 王贤珍(1969—),女,本科,高级工程师,研究方向为水域生态学,E-mail:1258066167@qq.com
  • 1. 山西省水产技术推广服务中心, 太原 030002;
  • 2. 山西农业大学动物科学学院, 太谷 030801;
  • 3. 畜禽遗传资源发掘与精准育种山西省重点实验室, 太谷 030801
基金项目:

国家自然科学基金资助项目(31600416);山西省自然科学基金资助项目(2021030221224136)

摘要: 在全球范围内,每年有大量的微塑料(microplastics, MPs)和激素类药物残留(hormone drug residues, HDR)被排放到水体中,对水生生物的生存造成威胁。更严重的是,由于MPs和HDR广泛的存在于水体中,形成复合污染物,加重了对水生生物的负面影响。鱼类作为生态系统中重要的组成部分,也面临着这些有害物质的威胁,主要体现在影响其生殖和发育。本文系统地分析了MPs和HDR在全球水体的分布状况,并对二者对鱼类生殖和发育联合毒性作用的相关研究进行了综述。此外,本文对目前研究存在的不足进行了论述并提出了相关的研究建议,以期为更好地研究MPs和HDR的环境风险提供参考。

English Abstract

参考文献 (148)

返回顶部

目录

/

返回文章
返回