Bhagat J, Nishimura N, Shimada Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2021, 405: 123913
|
Zhang H H, Cheng H D, Wang Y D, et al. Influence of functional group modification on the toxicity of nanoplastics[J]. Frontiers in Marine Science, 2022, 8: 800782
|
Xu X L, Jiang M Y, Miao D, et al. Synthesis of a terminal amino-modified nucleolin aptamer and its paclitaxel conjugate[J]. ChemistrySelect, 2022, 7(35): e202202781
|
Qiao J Y, Chen R, Wang M J, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction[J]. Nanoscale, 2021, 13(19): 8806-8816
|
Teng M M, Zhao X L, Wu F C, et al. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior[J]. Environment International, 2022, 163: 107154
|
Wang J Y, Lu S Y, Guo L Q, et al. Effects of polystyrene nanoplastics with different functional groups on rice (Oryza sativa L.) seedlings: Combined transcriptome, enzymology, and physiology[J]. Science of the Total Environment, 2022, 834: 155092
|
Bhagat J, Nishimura N, Shimada Y. Worming into a robust model to unravel the micro/nanoplastic toxicity in soil: A review on Caenorhabditis elegans[J]. TrAC Trends in Analytical Chemistry, 2021, 138: 116235
|
Kang H M, Jeong C B, Lee Y H, et al. Cross-reactivities of mammalian MAPKs antibodies in rotifer and copepod: Application in mechanistic studies in aquatic ecotoxicology[J]. Marine Pollution Bulletin, 2017, 124(2): 614-623
|
Qu M, Chen H, Lai H P, et al. Exposure to nanopolystyrene and its 4 chemically modified derivatives at predicted environmental concentrations causes differently regulatory mechanisms in nematode Caenorhabditis elegans[J]. Chemosphere, 2022, 305: 135498
|
Beiras R, Schönemann A M. Currently monitored microplastics pose negligible ecological risk to the global ocean[J]. Scientific Reports, 2020, 10(1): 22281
|
Cheng Y L, Kim J G, Kim H B, et al. Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: A review[J]. Chemical Engineering Journal, 2021, 410: 128381
|
Wu T S, He K Y, Zhan Q L, et al. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both[J]. Nanoscale, 2015, 7(48): 20460-20473
|
Liang X, Wang Y T, Cheng J, et al. Mesoporous silica nanoparticles at predicted environmentally relevant concentrations cause impairments in GABAergic motor neurons of nematode Caenorhabditis elegans[J]. Chemical Research in Toxicology, 2020, 33(7): 1665-1676
|
周栋. 内分泌干扰物双酚A对秀丽隐杆线虫的生态毒性效应及其作用机制研究[D]. 上海: 华东理工大学, 2016: 30 Zhou D. Eco-toxic effect of endocrine disruptor bisphenol A on Caenorhabditis elegans and its mechanism[D]. Shanghai: East China University of Science and Technology, 2016: 30(in Chinese).
|
Qu M, Kong Y, Yuan Y J, et al. Neuronal damage induced by nanopolystyrene particles in nematode Caenorhabditis elegans[J]. Environmental Science: Nano, 2019, 6(8): 2591-2601
|
Lei L L, Wu S Y, Lu S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1-8
|
Qu M, Wang D Y. Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans[J]. Science of the Total Environment, 2020, 703: 134817
|
Liu Q Y, Chen C X, Li M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin[J]. ACS Omega, 2020, 5(51): 33170-33177
|
Sammi S R, Foguth R M, Nieves C S, et al. Perfluorooctane sulfonate (PFOS) produces dopaminergic neuropathology in Caenorhabditis elegans[J]. Toxicological Sciences, 2019, 172(2): 417-434
|
Wang S T, Liu H L, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112239
|
Yu Y J, Xie D L, Yang Y, et al. Carboxyl-modified polystyrene microplastics induces neurotoxicity by affecting dopamine, glutamate, serotonin, and GABA neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 2023, 445: 130543
|
Wang X, Liu L, Zheng H, et al. Polystyrene microplastics impaired the feeding and swimming behavior of mysid shrimp Neomysis japonica[J]. Marine Pollution Bulletin, 2020, 150: 110660
|
Zhang X J, Ye Y L, Sun J D, et al. Abnormal neurotransmission of GABA and serotonin in Caenorhabditis elegans induced by Fumonisin B1[J]. Environmental Pollution, 2022, 304: 119141
|
Li P, Xu T T, Wu S Y, et al. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans[J]. Journal of Applied Toxicology, 2017, 37(10): 1140-1150
|
Ijomone O M, Miah M R, Akingbade G T, et al. Nickel-induced developmental neurotoxicity in C. elegans includes cholinergic, dopaminergic and GABAergic degeneration, altered behaviour, and increased SKN-1 activity[J]. Neurotoxicity Research, 2020, 37(4): 1018-1028
|
Shen Y, Wen Q, Liu H, et al. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans[J]. eLife, 2016, 5: e14197
|
Jorgensen E M. GABA[M]. WormBook, 2005: 1-13
|
Caito S W, Valentine W M, Aschner M. Dopaminergic neurotoxicity of S-ethyl N, N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N, N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans[J]. Journal of Neurochemistry, 2013, 127(6): 837-851
|
Kim M, Eom H J, Choi I, et al. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans[J]. Neurotoxicology, 2020, 77: 30-39
|
Wang Z L, Xu Z Q, Li X Q. Impacts of methamphetamine and ketamine on C. elegans’s physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters[J]. Journal of Hazardous Materials, 2019, 363: 268-276
|
Li Y X, Yu S H, Wu Q L, et al. Transmissions of serotonin, dopamine, and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematode Caenorhabditis elegans[J]. Nanotoxicology, 2013, 7(5): 1004-1013
|
Zhang W L, Li W H, Li J Y, et al. Neurobehavior and neuron damage following prolonged exposure of silver nanoparticles with/without polyvinylpyrrolidone coating in Caenorhabditis elegans[J]. Journal of Applied Toxicology, 2021, 41(12): 2055-2067
|
Akinyemi A J, Miah M R, Ijomone O M, et al. Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter[J]. Toxicology Reports, 2019, 6: 833-840
|
De la Parra-Guerra A, Stürzenbaum S, Olivero-Verbel J. Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110588
|
Cao X, Wang X L, Chen H B, et al. Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin[J]. Environmental Pollution, 2019, 244: 947-957
|