氨基改性聚苯乙烯对秀丽隐杆线虫的神经毒性及其作用机制

郑友平, 彭远锋, 张双, 林锡华. 氨基改性聚苯乙烯对秀丽隐杆线虫的神经毒性及其作用机制[J]. 生态毒理学报, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002
引用本文: 郑友平, 彭远锋, 张双, 林锡华. 氨基改性聚苯乙烯对秀丽隐杆线虫的神经毒性及其作用机制[J]. 生态毒理学报, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002
ZHENG Youping, PENG Yuanfeng, ZHANG Shuang, LIN Xihua. Neurotoxicity of Amino-modified Polystyrene and Its Mechanisms in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002
Citation: ZHENG Youping, PENG Yuanfeng, ZHANG Shuang, LIN Xihua. Neurotoxicity of Amino-modified Polystyrene and Its Mechanisms in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002

氨基改性聚苯乙烯对秀丽隐杆线虫的神经毒性及其作用机制

    作者简介: 郑友平(1990—),男,硕士研究生,研究方向为土壤生态环境风险与修复治理,E-mail:895942073@qq.com
    通讯作者: 林锡华(1994-),男,学士,工程师,主要研究方向为环境健康。E-mail:linxihua714@163.com
  • 基金项目:

    国家自然科学基金资助项目(42177420)

  • 中图分类号: X171.5

Neurotoxicity of Amino-modified Polystyrene and Its Mechanisms in Caenorhabditis elegans

    Corresponding author: LIN Xihua, linxihua714@163.com
  • Fund Project:
  • 摘要: 聚苯乙烯微塑料(PS)广泛存在于各种环境介质中,且对生物体会造成多种毒性效应。然而,氨基修饰PS(PS-NH2)的神经毒性及其作用机制尚不明确。本研究以秀丽隐杆线虫为模式生物,以运动行为、神经元发育、神经递质水平及其相关基因表达作为评估终点,探讨环境浓度下(0.1~100 μg·L-1)PS与PS-NH2的神经毒性及神经传递机制。实验结果显示,与原始PS相比,浓度为1 μg·L-1的PS-NH2急性暴露即显著降低秀丽线虫的头部摆动与身体弯曲频率,表明PS-NH2具有更强的神经毒性。10~100 μg·L-1的PS-NH2急性暴露显著改变多巴胺能与5-羟色胺能神经元的荧光强度。与此同时,秀丽线虫体内的多巴胺与5-羟色胺含量均显著降低,且dop-1dat-1tph-1等相关基因的表达水平显著下调。结果表明,PS-NH2暴露会造成多巴胺能和5-羟色胺能神经元的损伤,可能影响多巴胺和5-羟色胺的神经传递,进而对秀丽线虫造成神经毒性效应。本研究为揭示改性微塑料的潜在风险及其作用机制提供了新的见解。
  • 加载中
  • Bhagat J, Nishimura N, Shimada Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2021, 405: 123913
    Zhang H H, Cheng H D, Wang Y D, et al. Influence of functional group modification on the toxicity of nanoplastics[J]. Frontiers in Marine Science, 2022, 8: 800782
    Xu X L, Jiang M Y, Miao D, et al. Synthesis of a terminal amino-modified nucleolin aptamer and its paclitaxel conjugate[J]. ChemistrySelect, 2022, 7(35): e202202781
    Qiao J Y, Chen R, Wang M J, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction[J]. Nanoscale, 2021, 13(19): 8806-8816
    Teng M M, Zhao X L, Wu F C, et al. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior[J]. Environment International, 2022, 163: 107154
    Wang J Y, Lu S Y, Guo L Q, et al. Effects of polystyrene nanoplastics with different functional groups on rice (Oryza sativa L.) seedlings: Combined transcriptome, enzymology, and physiology[J]. Science of the Total Environment, 2022, 834: 155092
    Bhagat J, Nishimura N, Shimada Y. Worming into a robust model to unravel the micro/nanoplastic toxicity in soil: A review on Caenorhabditis elegans[J]. TrAC Trends in Analytical Chemistry, 2021, 138: 116235
    Kang H M, Jeong C B, Lee Y H, et al. Cross-reactivities of mammalian MAPKs antibodies in rotifer and copepod: Application in mechanistic studies in aquatic ecotoxicology[J]. Marine Pollution Bulletin, 2017, 124(2): 614-623
    Qu M, Chen H, Lai H P, et al. Exposure to nanopolystyrene and its 4 chemically modified derivatives at predicted environmental concentrations causes differently regulatory mechanisms in nematode Caenorhabditis elegans[J]. Chemosphere, 2022, 305: 135498
    Beiras R, Schönemann A M. Currently monitored microplastics pose negligible ecological risk to the global ocean[J]. Scientific Reports, 2020, 10(1): 22281
    Cheng Y L, Kim J G, Kim H B, et al. Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: A review[J]. Chemical Engineering Journal, 2021, 410: 128381
    Wu T S, He K Y, Zhan Q L, et al. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both[J]. Nanoscale, 2015, 7(48): 20460-20473
    Liang X, Wang Y T, Cheng J, et al. Mesoporous silica nanoparticles at predicted environmentally relevant concentrations cause impairments in GABAergic motor neurons of nematode Caenorhabditis elegans[J]. Chemical Research in Toxicology, 2020, 33(7): 1665-1676
    周栋. 内分泌干扰物双酚A对秀丽隐杆线虫的生态毒性效应及其作用机制研究[D]. 上海: 华东理工大学, 2016: 30 Zhou D. Eco-toxic effect of endocrine disruptor bisphenol A on Caenorhabditis elegans and its mechanism[D]. Shanghai: East China University of Science and Technology, 2016: 30(in Chinese).
    Qu M, Kong Y, Yuan Y J, et al. Neuronal damage induced by nanopolystyrene particles in nematode Caenorhabditis elegans[J]. Environmental Science: Nano, 2019, 6(8): 2591-2601
    Lei L L, Wu S Y, Lu S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1-8
    Qu M, Wang D Y. Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans[J]. Science of the Total Environment, 2020, 703: 134817
    Liu Q Y, Chen C X, Li M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin[J]. ACS Omega, 2020, 5(51): 33170-33177
    Sammi S R, Foguth R M, Nieves C S, et al. Perfluorooctane sulfonate (PFOS) produces dopaminergic neuropathology in Caenorhabditis elegans[J]. Toxicological Sciences, 2019, 172(2): 417-434
    Wang S T, Liu H L, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112239
    Yu Y J, Xie D L, Yang Y, et al. Carboxyl-modified polystyrene microplastics induces neurotoxicity by affecting dopamine, glutamate, serotonin, and GABA neurotransmission in Caenorhabditis elegans[J]. Journal of Hazardous Materials, 2023, 445: 130543
    Wang X, Liu L, Zheng H, et al. Polystyrene microplastics impaired the feeding and swimming behavior of mysid shrimp Neomysis japonica[J]. Marine Pollution Bulletin, 2020, 150: 110660
    Zhang X J, Ye Y L, Sun J D, et al. Abnormal neurotransmission of GABA and serotonin in Caenorhabditis elegans induced by Fumonisin B1[J]. Environmental Pollution, 2022, 304: 119141
    Li P, Xu T T, Wu S Y, et al. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans[J]. Journal of Applied Toxicology, 2017, 37(10): 1140-1150
    Ijomone O M, Miah M R, Akingbade G T, et al. Nickel-induced developmental neurotoxicity in C. elegans includes cholinergic, dopaminergic and GABAergic degeneration, altered behaviour, and increased SKN-1 activity[J]. Neurotoxicity Research, 2020, 37(4): 1018-1028
    Shen Y, Wen Q, Liu H, et al. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans[J]. eLife, 2016, 5: e14197
    Jorgensen E M. GABA[M]. WormBook, 2005: 1-13
    Caito S W, Valentine W M, Aschner M. Dopaminergic neurotoxicity of S-ethyl N, N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N, N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans[J]. Journal of Neurochemistry, 2013, 127(6): 837-851
    Kim M, Eom H J, Choi I, et al. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans[J]. Neurotoxicology, 2020, 77: 30-39
    Wang Z L, Xu Z Q, Li X Q. Impacts of methamphetamine and ketamine on C. elegans’s physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters[J]. Journal of Hazardous Materials, 2019, 363: 268-276
    Li Y X, Yu S H, Wu Q L, et al. Transmissions of serotonin, dopamine, and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematode Caenorhabditis elegans[J]. Nanotoxicology, 2013, 7(5): 1004-1013
    Zhang W L, Li W H, Li J Y, et al. Neurobehavior and neuron damage following prolonged exposure of silver nanoparticles with/without polyvinylpyrrolidone coating in Caenorhabditis elegans[J]. Journal of Applied Toxicology, 2021, 41(12): 2055-2067
    Akinyemi A J, Miah M R, Ijomone O M, et al. Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter[J]. Toxicology Reports, 2019, 6: 833-840
    De la Parra-Guerra A, Stürzenbaum S, Olivero-Verbel J. Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110588
    Cao X, Wang X L, Chen H B, et al. Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin[J]. Environmental Pollution, 2019, 244: 947-957
  • 加载中
计量
  • 文章访问数:  363
  • HTML全文浏览数:  363
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-10-18
郑友平, 彭远锋, 张双, 林锡华. 氨基改性聚苯乙烯对秀丽隐杆线虫的神经毒性及其作用机制[J]. 生态毒理学报, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002
引用本文: 郑友平, 彭远锋, 张双, 林锡华. 氨基改性聚苯乙烯对秀丽隐杆线虫的神经毒性及其作用机制[J]. 生态毒理学报, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002
ZHENG Youping, PENG Yuanfeng, ZHANG Shuang, LIN Xihua. Neurotoxicity of Amino-modified Polystyrene and Its Mechanisms in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002
Citation: ZHENG Youping, PENG Yuanfeng, ZHANG Shuang, LIN Xihua. Neurotoxicity of Amino-modified Polystyrene and Its Mechanisms in Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2024, 19(6): 274-282. doi: 10.7524/AJE.1673-5897.20241018002

氨基改性聚苯乙烯对秀丽隐杆线虫的神经毒性及其作用机制

    通讯作者: 林锡华(1994-),男,学士,工程师,主要研究方向为环境健康。E-mail:linxihua714@163.com
    作者简介: 郑友平(1990—),男,硕士研究生,研究方向为土壤生态环境风险与修复治理,E-mail:895942073@qq.com
  • 1. 广东新泓环境科技有限公司, 深圳 518071;
  • 2. 生态环境部华南环境科学研究所, 广州 510655
基金项目:

国家自然科学基金资助项目(42177420)

摘要: 聚苯乙烯微塑料(PS)广泛存在于各种环境介质中,且对生物体会造成多种毒性效应。然而,氨基修饰PS(PS-NH2)的神经毒性及其作用机制尚不明确。本研究以秀丽隐杆线虫为模式生物,以运动行为、神经元发育、神经递质水平及其相关基因表达作为评估终点,探讨环境浓度下(0.1~100 μg·L-1)PS与PS-NH2的神经毒性及神经传递机制。实验结果显示,与原始PS相比,浓度为1 μg·L-1的PS-NH2急性暴露即显著降低秀丽线虫的头部摆动与身体弯曲频率,表明PS-NH2具有更强的神经毒性。10~100 μg·L-1的PS-NH2急性暴露显著改变多巴胺能与5-羟色胺能神经元的荧光强度。与此同时,秀丽线虫体内的多巴胺与5-羟色胺含量均显著降低,且dop-1dat-1tph-1等相关基因的表达水平显著下调。结果表明,PS-NH2暴露会造成多巴胺能和5-羟色胺能神经元的损伤,可能影响多巴胺和5-羟色胺的神经传递,进而对秀丽线虫造成神经毒性效应。本研究为揭示改性微塑料的潜在风险及其作用机制提供了新的见解。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回