汞对单细胞蓝藻——集胞藻的光合系统的毒性效应
Toxic Effects of Mercury on the Photosynthetic System of Unicellualr Cyanobacterium Synechocystis sp. PCC 6803
-
摘要: 汞对藻类细胞的作用位点和毒性效应尚未完全阐明。为了深入探讨这一问题,本研究以集胞藻(Synechocystis sp. PCC 6803)为受试对象,在Hg2+浓度为0.000、0.005、0.010、0.020、0.030、0.040和0.050 mg·L-1的条件下处理96 h,并测定了藻细胞的OD730nm、光合色素含量、叶绿素荧光活性等生理指标。结果表明,当Hg2+浓度超过0.03 mg·L-1时,集胞藻的类囊体功能受到显著抑制,光合色素含量减少,光合电子传递受到阻碍,部分光系统II(PSⅡ)反应中心失活,最终导致集胞藻的最大光化学效率(Fv/Fm)下降,光合作用活性降低。同时,藻细胞通过增强剩余活性反应中心的功能,减缓了汞对光合系统的损伤。研究表明,PSⅡ中的QA、QB以及反应中心是Hg2+胁迫下集胞藻细胞的主要作用靶点。阐明这一问题可为深入理解水环境中汞污染的特性,并掌握藻类细胞对汞离子胁迫的响应机制提供重要依据。Abstract: The specific sites of action and toxic effects of mercury on algal cells remain incompletely understood. To address this gap, this study selected Synechocystis sp. PCC 6803 as the model organism and exposed it to Hg2+ at concentrations of 0.000, 0.005, 0.010, 0.020, 0.030, 0.040, and 0.050 mg·L-1 over 96 h. Physiological indicators such as OD730nm, photosynthetic pigment content, and chlorophyll fluorescence activity were measured. The results revealed that Hg2+ concentrations above 0.03 mg·L-1 significantly inhibited thylakoid function, reduced pigment content, disrupted photosynthetic electron transport, and led to the inactivation of some photosystem Ⅱ (PSⅡ) reaction centers. These effects caused a decline in maximum photochemical efficiency (Fv/Fm) and overall photosynthetic activity. In addition, the algal cells partially mitigated the damage by enhancing the activity of the remaining functional PSⅡ centers. This study identifies QA, QB, and the PSⅡ reaction center as the primary targets of Hg2+ stress in Synechocystis cells. These findings provide critical insights into the mechanisms of mercury pollution in aquatic environments and the cellular response to mercury ion stress.
-
Key words:
- mercury /
- Synechocystis sp. /
- photosystem Ⅱ /
- toxic effect
-
-
Suresh Kumar K, Dahms H U, Won E J, et al. Microalgae—A promising tool for heavy metal remediation[J]. Ecotoxicology and Environmental Safety, 2015, 113: 329-352 Prado R, García R, Rioboo C, et al. Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat[J]. Environment International, 2009, 35(2): 240-247 Appenroth K J, Stöckel J, Srivastava A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J]. Environmental Pollution, 2001, 115(1): 49-64 Reis L L D, Alho L O G, Abreu C B, et al. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111628 Utschig L M, Thurnauer M C. Metal ion modulated electron transfer in photosynthetic proteins[J]. Accounts of Chemical Research, 2004, 37(7): 439-447 Utschig L M, Ohigashi Y, Thurnauer M C, et al. A new metal-binding site in photosynthetic bacterial reaction centers that modulates QA to QB electron transfer[J]. Biochemistry, 1998, 37(23): 8278-8281 Clarkson T W. Human toxicology of mercury[J]. The Journal of Trace Elements in Experimental Medicine, 1998, 11(2/3): 303-317 Driscoll C T, Mason R P, Chan H M, et al. Mercury as a global pollutant: Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10): 4967-4983 Naidu R, Biswas B, Willett I R, et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity[J]. Environment International, 2021, 156: 106616 Clarkson T W, Magos L. The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology, 2006, 36(8): 609-662 Bravo A G, Cosio C, Amouroux D, et al. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant[J]. Water Research, 2014, 49: 391-405 Le Faucheur S, Campbell P G, Fortin C, et al. Interactions between mercury and phytoplankton: Speciation, bioavailability, and internal handling[J]. Environmental Toxicology and Chemistry, 2014, 33(6): 1211-1224 Zahir F, Rizwi S J, Haq S K, et al. Low dose mercury toxicity and human health[J]. Environmental Toxicology and Pharmacology, 2005, 20(2): 351-360 Arsad S, Kholifah S N, Prabawati E, et al. Effect of mercury on growth of several microalgae[J]. Asian Journal of Water, Environment and Pollution, 2020, 17(3): 13-17 Bertrand M, Poirier I. Photosynthetic organisms and excess of metals[J]. Photosynthetica, 2005, 43(3): 345-353 Salam A, Khan A R, Liu L, et al. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127021 Wang S Z, Duo J, Wufuer R, et al. The binding ability of mercury (Hg) to photosystem Ⅰ and Ⅱ explained the difference in its toxicity on the two photosystems of Chlorella pyrenoidosa[J]. Toxics, 2022, 10(8): 455 Stiborová M, Doubravová M, Leblová S. A comparative study of the effect of heavy metal ions on ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase[J]. Biochemie und Physiologie Der Pflanzen, 1986, 181(6): 373-379 Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1983, 11(5): 591-592 Pan X L, Deng C N, Zhang D Y, et al. Toxic effects of amoxicillin on the photosystem Ⅱ of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests[J]. Aquatic Toxicology, 2008, 89(4): 207-213 许萍萍, 涂晓杰, 成凤凤, 等. 庆大霉素对斜生栅藻生长与光合活性的影响[J]. 环境科学与技术, 2021, 44(8): 146-153 Xu P P, Tu X J, Cheng F F, et al. Toxic effects of gentamicin on growth and activity of photosynthetic system Ⅱ of Scenedesmus obliquus[J]. Environmental Science & Technology, 2021, 44(8): 146-153(in Chinese)
Beauchemin R, Gauthier A, Harnois J, et al. Spermine and spermidine inhibition of photosystem Ⅱ: Disassembly of the oxygen evolving complex and consequent perturbation in electron donation from TyrZ to P680+ and the quinone acceptors Q-A to QB[J]. Biochimica et Biophysica Acta, 2007, 1767(7): 905-912 Wodala B, Deák Z, Vass I, et al. In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves[J]. Plant Physiology, 2008, 146(4): 1920-1927 Kaftan D, Meszaros T, Whitmarsh J, et al. Characterization of photosystem Ⅱ activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda[J]. Plant Physiology, 1999, 120(2): 433-442 Nowicka B, Pluciński B, Kuczyńska P, et al. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions[J]. Ecotoxicology and Environmental Safety, 2016, 130: 133-145 蔡卓平, 刘伟杰, 段舜山. 重金属Zn2+胁迫下米氏凯伦藻(Karenia mikimotoi)的生长生理响应研究[J]. 生态科学, 2019, 38(2): 176-181 Cai Z P, Liu W J, Duan S S. Growth and physiological response of Karenia mikimotoi to heavy metal Zn2+ stress[J]. Ecological Science, 2019, 38(2): 176-181(in Chinese)
叶鹏浩, 韩婷婷, 付贵权, 等. 半叶马尾藻对重金属镉胁迫的生理响应[J]. 南方水产科学, 2019, 15(5): 35-40 Ye P H, Han T T, Fu G Q, et al. Physiological response of Sargassum hemiphyllum to cadmium stress[J]. South China Fisheries Science, 2019, 15(5): 35-40(in Chinese)
Polívka T, Frank H A. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research, 2010, 43(8): 1125-1134 Gao K S, Yu H Y, Brown M T. Solar PAR and UV radiation affects the physiology and morphology of the Cyanobacterium anabaena sp. PCC 7120[J]. Journal of Photochemistry and Photobiology B: Biology, 2007, 89(2/3): 117-124 刘易见, 颜韦, 刘春辰, 等. 蒽和镉对米氏凯伦藻的生长及叶绿素a、丙二醛含量的影响[J]. 生态科学, 2016, 35(4): 47-51 Liu Y J, Yan W, Liu C C, et al. The acute toxic effect of anthracene and cadmium on Karenia mikimotoi Hansen[J]. Ecological Science, 2016, 35(4): 47-51(in Chinese)
Strasser R J, Tsimilli-Michael M, Qiang S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6/7): 1313-1326 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559-566 Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559-566(in Chinese)
Sbihi K, Cherifi O, Gharmali A E, et al. Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: A laboratory study[J]. Environmental Science, 2012, 3(3): 497-506 Zhou W B, Juneau P, Qiu B S. Growth and photosynthetic responses of the bloom-forming Cyanobacterium Microcystis aeruginosa to elevated levels of cadmium[J]. Chemosphere, 2006, 65(10): 1738-1746 夏亦雪, 艾晓寒, 朱飞霞, 等. 不同衣藻光合作用响应汞胁迫的比较研究[J]. 水生生物学报, 2024, 48(6): 1040-1050 Xia Y X, Ai X H, Zhu F X, et al. Comparative of photosynthesis of different Chlamydomonas reinhardtii in response to mercury stress[J]. Acta Hydrobiologica Sinica, 2024, 48(6): 1040-1050(in Chinese)
Gan T T, Zhao N J, Yin G F, et al. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology[J]. Journal of Photochemistry and Photobiology B, Biology, 2019, 197: 111551 Ji X, Cheng J, Gong D H, et al. The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga-Scenedesmus obliquus XJ002[J]. Science of the Total Environment, 2018, 633: 593-599 -

计量
- 文章访问数: 284
- HTML全文浏览数: 284
- PDF下载数: 58
- 施引文献: 0