汞对单细胞蓝藻——集胞藻的光合系统的毒性效应

景晓萱, 艾晓寒, 阮港, 潘炜, 毕永红, 李渊. 汞对单细胞蓝藻——集胞藻的光合系统的毒性效应[J]. 生态毒理学报, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001
引用本文: 景晓萱, 艾晓寒, 阮港, 潘炜, 毕永红, 李渊. 汞对单细胞蓝藻——集胞藻的光合系统的毒性效应[J]. 生态毒理学报, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001
JING Xiaoxuan, AI Xiaohan, RUAN Gang, PAN Wei, BI Yonghong, LI Yuan. Toxic Effects of Mercury on the Photosynthetic System of Unicellualr Cyanobacterium Synechocystis sp. PCC 6803[J]. Asian journal of ecotoxicology, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001
Citation: JING Xiaoxuan, AI Xiaohan, RUAN Gang, PAN Wei, BI Yonghong, LI Yuan. Toxic Effects of Mercury on the Photosynthetic System of Unicellualr Cyanobacterium Synechocystis sp. PCC 6803[J]. Asian journal of ecotoxicology, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001

汞对单细胞蓝藻——集胞藻的光合系统的毒性效应

    作者简介: 景晓萱(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:jxxyf9@163.com
    通讯作者: 李渊(1987-),男,博士,副教授,主要研究方向为全球变化下的环境污染和生态修复。E-mail:liyuan_198711@sina.com
  • 基金项目:

    国家自然科学基金青年项目(42207528);国家重点研发计划项目(2020YFA0907400);山西省基础研究计划青年项目(202203021212305);山西省高等学校科技创新项目(2022L278)

  • 中图分类号: X171.5

Toxic Effects of Mercury on the Photosynthetic System of Unicellualr Cyanobacterium Synechocystis sp. PCC 6803

    Corresponding author: LI Yuan, liyuan_198711@sina.com
  • Fund Project:
  • 摘要: 汞对藻类细胞的作用位点和毒性效应尚未完全阐明。为了深入探讨这一问题,本研究以集胞藻(Synechocystis sp. PCC 6803)为受试对象,在Hg2+浓度为0.000、0.005、0.010、0.020、0.030、0.040和0.050 mg·L-1的条件下处理96 h,并测定了藻细胞的OD730nm、光合色素含量、叶绿素荧光活性等生理指标。结果表明,当Hg2+浓度超过0.03 mg·L-1时,集胞藻的类囊体功能受到显著抑制,光合色素含量减少,光合电子传递受到阻碍,部分光系统II(PSⅡ)反应中心失活,最终导致集胞藻的最大光化学效率(Fv/Fm)下降,光合作用活性降低。同时,藻细胞通过增强剩余活性反应中心的功能,减缓了汞对光合系统的损伤。研究表明,PSⅡ中的QA、QB以及反应中心是Hg2+胁迫下集胞藻细胞的主要作用靶点。阐明这一问题可为深入理解水环境中汞污染的特性,并掌握藻类细胞对汞离子胁迫的响应机制提供重要依据。
  • 加载中
  • Suresh Kumar K, Dahms H U, Won E J, et al. Microalgae—A promising tool for heavy metal remediation[J]. Ecotoxicology and Environmental Safety, 2015, 113: 329-352
    Prado R, García R, Rioboo C, et al. Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat[J]. Environment International, 2009, 35(2): 240-247
    Appenroth K J, Stöckel J, Srivastava A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J]. Environmental Pollution, 2001, 115(1): 49-64
    Reis L L D, Alho L O G, Abreu C B, et al. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111628
    Utschig L M, Thurnauer M C. Metal ion modulated electron transfer in photosynthetic proteins[J]. Accounts of Chemical Research, 2004, 37(7): 439-447
    Utschig L M, Ohigashi Y, Thurnauer M C, et al. A new metal-binding site in photosynthetic bacterial reaction centers that modulates QA to QB electron transfer[J]. Biochemistry, 1998, 37(23): 8278-8281
    Clarkson T W. Human toxicology of mercury[J]. The Journal of Trace Elements in Experimental Medicine, 1998, 11(2/3): 303-317
    Driscoll C T, Mason R P, Chan H M, et al. Mercury as a global pollutant: Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10): 4967-4983
    Naidu R, Biswas B, Willett I R, et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity[J]. Environment International, 2021, 156: 106616
    Clarkson T W, Magos L. The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology, 2006, 36(8): 609-662
    Bravo A G, Cosio C, Amouroux D, et al. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant[J]. Water Research, 2014, 49: 391-405
    Le Faucheur S, Campbell P G, Fortin C, et al. Interactions between mercury and phytoplankton: Speciation, bioavailability, and internal handling[J]. Environmental Toxicology and Chemistry, 2014, 33(6): 1211-1224
    Zahir F, Rizwi S J, Haq S K, et al. Low dose mercury toxicity and human health[J]. Environmental Toxicology and Pharmacology, 2005, 20(2): 351-360
    Arsad S, Kholifah S N, Prabawati E, et al. Effect of mercury on growth of several microalgae[J]. Asian Journal of Water, Environment and Pollution, 2020, 17(3): 13-17
    Bertrand M, Poirier I. Photosynthetic organisms and excess of metals[J]. Photosynthetica, 2005, 43(3): 345-353
    Salam A, Khan A R, Liu L, et al. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127021
    Wang S Z, Duo J, Wufuer R, et al. The binding ability of mercury (Hg) to photosystem Ⅰ and Ⅱ explained the difference in its toxicity on the two photosystems of Chlorella pyrenoidosa[J]. Toxics, 2022, 10(8): 455
    Stiborová M, Doubravová M, Leblová S. A comparative study of the effect of heavy metal ions on ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase[J]. Biochemie und Physiologie Der Pflanzen, 1986, 181(6): 373-379
    Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1983, 11(5): 591-592
    Pan X L, Deng C N, Zhang D Y, et al. Toxic effects of amoxicillin on the photosystem Ⅱ of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests[J]. Aquatic Toxicology, 2008, 89(4): 207-213
    许萍萍, 涂晓杰, 成凤凤, 等. 庆大霉素对斜生栅藻生长与光合活性的影响[J]. 环境科学与技术, 2021, 44(8): 146-153

    Xu P P, Tu X J, Cheng F F, et al. Toxic effects of gentamicin on growth and activity of photosynthetic system Ⅱ of Scenedesmus obliquus[J]. Environmental Science & Technology, 2021, 44(8): 146-153(in Chinese)

    Beauchemin R, Gauthier A, Harnois J, et al. Spermine and spermidine inhibition of photosystem Ⅱ: Disassembly of the oxygen evolving complex and consequent perturbation in electron donation from TyrZ to P680+ and the quinone acceptors Q-A to QB[J]. Biochimica et Biophysica Acta, 2007, 1767(7): 905-912
    Wodala B, Deák Z, Vass I, et al. In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves[J]. Plant Physiology, 2008, 146(4): 1920-1927
    Kaftan D, Meszaros T, Whitmarsh J, et al. Characterization of photosystem Ⅱ activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda[J]. Plant Physiology, 1999, 120(2): 433-442
    Nowicka B, Pluciński B, Kuczyńska P, et al. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions[J]. Ecotoxicology and Environmental Safety, 2016, 130: 133-145
    蔡卓平, 刘伟杰, 段舜山. 重金属Zn2+胁迫下米氏凯伦藻(Karenia mikimotoi)的生长生理响应研究[J]. 生态科学, 2019, 38(2): 176-181

    Cai Z P, Liu W J, Duan S S. Growth and physiological response of Karenia mikimotoi to heavy metal Zn2+ stress[J]. Ecological Science, 2019, 38(2): 176-181(in Chinese)

    叶鹏浩, 韩婷婷, 付贵权, 等. 半叶马尾藻对重金属镉胁迫的生理响应[J]. 南方水产科学, 2019, 15(5): 35-40

    Ye P H, Han T T, Fu G Q, et al. Physiological response of Sargassum hemiphyllum to cadmium stress[J]. South China Fisheries Science, 2019, 15(5): 35-40(in Chinese)

    Polívka T, Frank H A. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research, 2010, 43(8): 1125-1134
    Gao K S, Yu H Y, Brown M T. Solar PAR and UV radiation affects the physiology and morphology of the Cyanobacterium anabaena sp. PCC 7120[J]. Journal of Photochemistry and Photobiology B: Biology, 2007, 89(2/3): 117-124
    刘易见, 颜韦, 刘春辰, 等. 蒽和镉对米氏凯伦藻的生长及叶绿素a、丙二醛含量的影响[J]. 生态科学, 2016, 35(4): 47-51

    Liu Y J, Yan W, Liu C C, et al. The acute toxic effect of anthracene and cadmium on Karenia mikimotoi Hansen[J]. Ecological Science, 2016, 35(4): 47-51(in Chinese)

    Strasser R J, Tsimilli-Michael M, Qiang S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6/7): 1313-1326
    李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559-566

    Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559-566(in Chinese)

    Sbihi K, Cherifi O, Gharmali A E, et al. Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: A laboratory study[J]. Environmental Science, 2012, 3(3): 497-506
    Zhou W B, Juneau P, Qiu B S. Growth and photosynthetic responses of the bloom-forming Cyanobacterium Microcystis aeruginosa to elevated levels of cadmium[J]. Chemosphere, 2006, 65(10): 1738-1746
    夏亦雪, 艾晓寒, 朱飞霞, 等. 不同衣藻光合作用响应汞胁迫的比较研究[J]. 水生生物学报, 2024, 48(6): 1040-1050

    Xia Y X, Ai X H, Zhu F X, et al. Comparative of photosynthesis of different Chlamydomonas reinhardtii in response to mercury stress[J]. Acta Hydrobiologica Sinica, 2024, 48(6): 1040-1050(in Chinese)

    Gan T T, Zhao N J, Yin G F, et al. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology[J]. Journal of Photochemistry and Photobiology B, Biology, 2019, 197: 111551
    Ji X, Cheng J, Gong D H, et al. The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga-Scenedesmus obliquus XJ002[J]. Science of the Total Environment, 2018, 633: 593-599
  • 加载中
计量
  • 文章访问数:  285
  • HTML全文浏览数:  285
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-07-12
景晓萱, 艾晓寒, 阮港, 潘炜, 毕永红, 李渊. 汞对单细胞蓝藻——集胞藻的光合系统的毒性效应[J]. 生态毒理学报, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001
引用本文: 景晓萱, 艾晓寒, 阮港, 潘炜, 毕永红, 李渊. 汞对单细胞蓝藻——集胞藻的光合系统的毒性效应[J]. 生态毒理学报, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001
JING Xiaoxuan, AI Xiaohan, RUAN Gang, PAN Wei, BI Yonghong, LI Yuan. Toxic Effects of Mercury on the Photosynthetic System of Unicellualr Cyanobacterium Synechocystis sp. PCC 6803[J]. Asian journal of ecotoxicology, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001
Citation: JING Xiaoxuan, AI Xiaohan, RUAN Gang, PAN Wei, BI Yonghong, LI Yuan. Toxic Effects of Mercury on the Photosynthetic System of Unicellualr Cyanobacterium Synechocystis sp. PCC 6803[J]. Asian journal of ecotoxicology, 2024, 19(6): 283-291. doi: 10.7524/AJE.1673-5897.20240712001

汞对单细胞蓝藻——集胞藻的光合系统的毒性效应

    通讯作者: 李渊(1987-),男,博士,副教授,主要研究方向为全球变化下的环境污染和生态修复。E-mail:liyuan_198711@sina.com
    作者简介: 景晓萱(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:jxxyf9@163.com
  • 1. 太原科技大学环境与资源学院, 太原 030024;
  • 2. 中国科学院水生生物研究所, 淡水生态与生物技术国家重点实验室, 武汉 430072
基金项目:

国家自然科学基金青年项目(42207528);国家重点研发计划项目(2020YFA0907400);山西省基础研究计划青年项目(202203021212305);山西省高等学校科技创新项目(2022L278)

摘要: 汞对藻类细胞的作用位点和毒性效应尚未完全阐明。为了深入探讨这一问题,本研究以集胞藻(Synechocystis sp. PCC 6803)为受试对象,在Hg2+浓度为0.000、0.005、0.010、0.020、0.030、0.040和0.050 mg·L-1的条件下处理96 h,并测定了藻细胞的OD730nm、光合色素含量、叶绿素荧光活性等生理指标。结果表明,当Hg2+浓度超过0.03 mg·L-1时,集胞藻的类囊体功能受到显著抑制,光合色素含量减少,光合电子传递受到阻碍,部分光系统II(PSⅡ)反应中心失活,最终导致集胞藻的最大光化学效率(Fv/Fm)下降,光合作用活性降低。同时,藻细胞通过增强剩余活性反应中心的功能,减缓了汞对光合系统的损伤。研究表明,PSⅡ中的QA、QB以及反应中心是Hg2+胁迫下集胞藻细胞的主要作用靶点。阐明这一问题可为深入理解水环境中汞污染的特性,并掌握藻类细胞对汞离子胁迫的响应机制提供重要依据。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回