Processing math: 100%

污泥含水率对污泥颗粒干燥速率和形貌特征的影响

李国鑫, 李锋, 刘锋, 周妍. 污泥含水率对污泥颗粒干燥速率和形貌特征的影响[J]. 环境工程学报, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128
引用本文: 李国鑫, 李锋, 刘锋, 周妍. 污泥含水率对污泥颗粒干燥速率和形貌特征的影响[J]. 环境工程学报, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128
LI Guoxin, LI Feng, LIU Feng, ZHOU Yan. The impact of sludge moisture content on the drying rate and morphological characteristics of sludge particles[J]. Chinese Journal of Environmental Engineering, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128
Citation: LI Guoxin, LI Feng, LIU Feng, ZHOU Yan. The impact of sludge moisture content on the drying rate and morphological characteristics of sludge particles[J]. Chinese Journal of Environmental Engineering, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128

污泥含水率对污泥颗粒干燥速率和形貌特征的影响

    作者简介: 李国鑫(1999—),男,硕士研究生,研究方向为废水处理与资源化利用,liguoxin1999@163.com
    通讯作者: 周妍(1993—),女,博士,讲师,研究方向为颗粒化技术,zhouyan@usts.edu.cn
  • 基金项目:
    2023年江苏省“双创博士”(JSSCBS20230456)
  • 中图分类号: X705

The impact of sludge moisture content on the drying rate and morphological characteristics of sludge particles

    Corresponding author: ZHOU Yan, zhouyan@usts.edu.cn
  • 摘要: 随着中国经济的快速发展和城市化进程的加速,城镇污水处理领域产生的大量污泥对环境和经济造成了较大的负担。因此,通过对不同含水率污泥造粒所得污泥颗粒的干燥速率、形貌特征及资源化利用研究,旨在为污泥的减量化、无害化和资源化提供了理论依据和技术支持。通过研究发现:1)污泥造粒能有效提升干燥速率,且提升效果在利用含水率为20%至30%之间的污泥造粒时最明显。2)随着造粒时污泥含水率的升高,成型颗粒的堆积密度逐渐降低、结构强度逐渐增大、微观结构从裂纹沟壑逐渐转变为平整光滑。3)利用污泥颗粒制备的活性炭具有较好的吸附性能,且吸附效果在采用含水率为30%至40%之间的污泥造粒时达到最佳。这些发现有助于实现污泥的高效处理和资源化利用,对促进环境保护和可持续发展具有重要意义。
  • 磷(P)是现代农业和化学工业中广泛使用的重要资源,通常以磷酸盐的形式存在于水溶液中[1]. 然而,在磷化工的快速发展和过量施用磷肥下导致磷大量向淡水资源转移,水体磷浓度超标,藻类过度生长,引起水体富营养化,造成磷资源损失和环境污染[23]. 此外,磷是一种不可再生资源,由于每年对磷的需求不断增长[4],预计在未来100—400年内将完全消耗掉[5]. 因此,废水中磷的去除和回收对于缓解富营养化染和磷资源危机至关重要[6].

    迄今为止,化学沉淀[7]、膜分离工艺[8]、生物处理[9]、阴离子交换[10]和吸附[11]等多种技术已被证明可以用于去除水体中磷酸盐. 而吸附法因其操作简单、效率高成本低、应用方便等优点,吸引了众多研究人员的关注. 已经发现多种吸附材料,如水和氧化铁[12]、多孔二氧化硅[13]和碳基材料[14]等,它们具有良好的吸附性,用于去除废水磷酸盐的吸附剂. 但相对而言,这些吸附剂多为粉末形式很难在水中回收,这可能会造成二次污染问题[15]. 并且一些材料存在苛刻的问题制备条件好,成本高,去除能力低,难以分离等缺点. 制备高效稳定、绿色环保可循环利用的新型磷酸盐吸附材料吸附和回收水体磷酸盐,这是近年来的研究热点之一[16].

    近年来,合成纤维作为催化剂和吸附剂载体受到研究者的广泛关注. 其中,腈纶纤维(PANF)含有丰富的氰基和酯基等化学性质活泼的基团,在一定条件下可以进行特定的化学反应,并可以转化为具有多种官能团的新型功能化纤维,是一种优秀的载体材料. 腈纶纤维具有成本低、易获得、密度低、柔韧性好等特点,其在大规模机械化加工和环境保护方面也具有一定的优势[17]. 腈纶纤维可以在一定条件进行灵活改性,构建富含氨基、羟基、羧基、季铵盐等组分[18]. 例如,Xu等[19]通过简单的化学接枝反应合成了一种可回收的载铁胺化聚丙烯腈纤维(PANAF-Fe)去除废水中的磷酸盐;Zheng等[20]合成了富含氯离子的功能化聚丙烯腈纤维(PANAF-Cl),对废水中磷酸盐的去除率高达90%以上,最大吸附容量为15.49 mg·g−1. 丁天琦[21]以聚丙烯腈(PAN)作为基体,制备出多孔碳纳米纤维膜,对磷酸盐最大去除量可达131 mg·g−1.

    铁、铜、镧等金属和磷酸盐具有较强的结合能力,其在水体磷酸盐的去除获得较多的应用. 然而,使用固载铜离子的胺化纤维对水中磷酸盐的吸附尚缺乏研究. 本研究以腈纶纤维为原料,将Cu2+固载在胺化改性腈纶纤维表面,制备了新型磷酸盐吸附剂(PANAF-Cu),探究了该吸附剂对水体中磷酸盐的吸附性能,为废水中磷的回收提供理论依据.

    腈纶纤维(抚顺石化公司,中国),使用前将其剪成长度约10 cm备用. 实验中所有化学试剂均为国内市售分析纯试剂,且未进一步纯化. 本实验中所用化学试剂:乙二胺、磷酸二氢钾(上海阿拉丁试剂有限公司)、三水合硝酸铜(上海麦克林生化科技股份有限公司);盐酸、硝酸、硫酸(西陇科技有限公司);碳酸钾、氢氧化钠、碳酸氢钠(上海素艺化学试剂有限公司);氯化钾、硫酸钾、硝酸钾、一水合柠檬酸(国药集团化学试剂有限公司)、乙二胺四乙酸二钠(EDTA,上海苏懿化学试剂有限公司)、氯化钠(上海中试化工有限公司). 本研究中的所有实验使用的皆为去离子水.

    实验中主要用到的仪器为:集热式恒温加热磁力搅拌器(DF-101S),巩义市予华仪器有限责任公司;磁力搅拌器(84-1A),金坛区西城新瑞仪器厂;鼓风干燥箱(DHG-9070A型),常州海博仪器设备有限公司;pH计(FE20~standard),梅特勒-托利多仪器有限公司;循环水式多用真空泵(SHB-Ⅲ),郑州长城科工贸有限公司;分光光度计(722G),上海仪电分析仪器有限公司.

    将600 mg干燥的腈纶纤维(PANF)、20 mL乙二胺和20 mL去离子水(DI)先在室温条件下混合搅拌,然后加入到高压反应釜中125°C反应100 min.反应结束后,将纤维从溶液中分离出来,后用70—80℃去离子水反复洗涤,再将纤维置于60℃烘箱中干燥过夜,得到淡黄色的胺化纤维(PANAF),即胺化腈纶纤维.

    准备好50 mL 10 mmol·L−1的三水合硝酸铜(Cu(NO32·3H2O)配制的硝酸铜溶液,将50 mg干燥过夜后的胺化纤维加入到溶液中,室温下搅拌30 min,过滤后,进一步洗涤,反复冲洗,后将纤维放置在60 ℃的烘箱中干燥6 h,即可得到载铜的功能化纤维PANAF-Cu.

    扫描电子显微镜(SEM,德国蔡司Sigma 300),傅里叶变换红外光谱仪(FTIR,美国PerkinElmer Spectrum One),全自动元素分析仪(EA,德国Vario EL Cube),X射线光电子能谱仪(XPS,美国Thermo Scientific K-Alpha),X射线衍射仪(XRD,德国Bruker D8 Advance),pH计(METTLER TOLEDO,FE20),可见分光光度计(722G,Shanghai).

    利用扫描电子显微镜(SEM)、元素分析(EA)、傅里叶红外光谱仪(FTIR)、X射线衍射光谱(XRD)和能量色散X射线谱仪(XPS)等表征功能化纤维的表面形貌、化学结构及内部晶体结构等,从而根据表征结果检验改性纤维是否初步制备成功.

    分别探究不同吸附时间、不同pH值、不同温度以及不同初始磷酸盐浓度下PANAF-Cu对磷酸盐的吸附能力. 纤维吸附饱和后,用镊子将纤维吸附剂从溶液中分离出来,从剩余溶液中吸取1 mL溶液放入50 mL容量瓶中,后按钼酸铵分光光度法测定不同条件下待测液中磷酸盐的浓度,测定低浓度磷酸盐时,要先将剩余溶液用0.22 μm滤膜过滤,后使用ICP-OES测定. 所有吸附实验均进行3次重复. 计算吸附量和吸附率公式如下:

    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)

    式中,η为吸附率,%;qe为吸附P的量,mg·g−1C0Ce分别为无机磷初始质量浓度和平衡浓度,mg·L−1V为溶液体积,L;W为吸附剂添加量,g.

    吸附动力学是用来描述吸附剂吸附溶质速率快慢的方式,采用拟一级动力学和拟二级动力学模型探究正在进行的吸附过程,以便讨论其合适的吸附机理. 不同动力学模型如下:

    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)

    其中, qtqet时刻和平衡时的吸附量(mg·g−1)K1和K2依次为拟一级动力学和拟二级动力学的吸附速率常数.

    吸附等温线是描述在一定温度下吸附剂达到吸附平衡状态时吸附量(qe)和吸附质浓度(Ce)之间关系的曲线,常见的模型有Freundlich模型、Langmuir模型、Temkin 模型和D-R方程,本文采用Langmuir和Freundlich模型探究PANAF-Cu对无机磷的吸附方式,拟合方程如下:

    stringUtils.convertMath(!{formula.content}) (5)
    stringUtils.convertMath(!{formula.content}) (6)

    其中,qm为Langmuir模型估算的理论最大吸附量,KL为Langmuir常数,KFn分别是Freundlich常数和均匀性系数.

    固载铜离子的功能化腈纶纤维(PANAF-Cu)的合成由两步法完成,首先腈纶纤维和乙二胺发生胺化反应,纤维表面富含伯氨功能基的胺化纤维(PANAF),进一步利用氮和铜的配位作用,成功构建铜离子螯合的胺化纤维(PANAF-Cu). 胺化纤维的改性程度可以通过增重法来计算,胺化后的纤维对比腈纶纤维质量增加地较为明显,增重为10%,且纤维颜色也发生了变化,说明乙二胺被成功接枝到纤维表面. 胺化的程度可以通过控制反应时间或者乙二胺的浓度,过低的胺化程度不利于铜离子的螯合,然而过高的胺化程度导致纤维机械强度的下降,因此本文选择增重为10%的PANAF作进一步研究.

    此外,本文研究了胺化纤维与不同浓度硝酸铜溶液制备得到的PANAF-Cu对磷酸盐的吸附能力, PANAF-Cu功能化纤维在Cu(NO32浓度增加的同时,其对磷酸盐的去除能力也不断增加,并且在Cu(NO32浓度为10 mmol·L−1时达到最高值,最大吸附量为35.29 mg·g−1. 然而,随着硝酸铜浓度的继续增加,PANAF-Cu中铜的含量达到饱和,导致其对磷酸盐的吸附能力趋势放缓至平衡,这是因为PANAF对铜的固载量是有限的,表明当铜离子浓度大于10 mmol·L−1时,PANAF对铜离子的固载量达到饱和. 因此,选择浓度为10 mmol·L−1的硝酸铜溶液制备PANAF-Cu.

    图1可知,样品都呈连续完整的纤维状,表明纤维在改性前后及使用过程中,其完整性得到了良好的保持,未遭受到破坏. 放大2000倍的电子显微镜图像看到,随着改性反应的进行,纤维表面出现了若干裂纹,可能是因为氨基的进入和增溶作用导致纤维直径增加,出现裂纹,在一定程度上增加了纤维的表面积. 放大20000倍后,在胺化反应和螯合Cu2+后,可以清楚地观察到纤维不同程度的变形和溶胀,纤维表面明显变得粗糙,同时还被一层颗粒状物所覆盖,这可能是因为纤维表面的薄膜形成了由若干Cu-N配位产生的片晶.

    图 1  不同纤维的电镜扫描图
    Figure 1.  Electron microscopy scans of different fibers

    为进一步明确纤维结构,利用傅里叶红外光谱(FTIR)和能谱图[22]分析了纤维改性前后的纤维表面组分. 图2(a)显示了每个阶段纤维的EDS能谱图,发现与PANAF相比,PANAF-Cu出现了新的Cu元素的峰,这表明Cu2+成功的固载到了胺化纤维上. 图2(b)显示了每个阶段纤维的红外光谱,PANF在2242 cm−1处的吸收峰和在1732 cm−1处的吸收峰分别为腈纶纤维第一单体丙烯腈的C≡N的伸缩振动和第二单体丙烯酸甲酯的C=O伸缩振动[17]. 由于胺化反应消耗了PANF上的氰基,胺化反应后2242 cm−1处的吸收峰强度下降. 此外,由于PANF中的C≡N在强碱性EDA溶液中被水解,与EDA中的NH2基团在1640 cm−1处形成了酰胺C=O双键的伸缩震动峰,说明了胺基基团的成功接枝[23]. 在胺化改性纤维吸附Cu2+后,在538 cm−1处新峰的出现,可能归因为Cu-N的配位结构,表明Cu已被-NH所固化[24]. 上述结果表明了胺基的成功接枝,以及Cu2+在纤维上的固载.

    图 2  不同纤维的EDS能谱图(a) 和红外光谱图(b)
    Figure 2.  EDS energy spectrum (a) and infrared spectra (b) of different fibers

    通过X射线衍射(XRD)表征了不同纤维的晶体结构. 图3显示了不同阶段的纤维的XRD图像,每个纤维都在2θ为16.5°处有一个共同的衍射峰,2θ = 28.6°处有一个不太强烈的衍射峰,表明PANAF、PANAF-Cu和PANAF-Cu-P与PANF具有相似的特征峰,表明纤维改性后仍保持了腈纶纤维原有的晶体结构,未被破坏,依然保持良好. 此外,PANAF、PANAF-Cu和PANAF-Cu-P较弱的衍射峰的强度明显降低,表明聚丙烯腈的聚合物链结构已经被胺分子部分溶解. 进一步固载Cu2+后,XRD光谱中并没有观察到结晶的Cu,这表明加载在纤维表面的固体Cu处于无定形状态,并可能通过Cu—N键与纤维骨架结合.

    图 3  不同纤维的XRD图谱
    Figure 3.  XRD patterns of different fibers

    通过元素分析分析了不同阶段纤维的元素组成,相关数据见表1. 与PANF相比,PANAF中的C含量降低,H含量增加,因为乙二胺比原始腈纶纤维具有更少的C和更多的H,表明乙二胺被成功接枝到PANF上. 此外,N的存在也证实了不是所有的C≡N基团都被水解,参与EDA的官能化,所以改性过程可能仅发生在表面. 引入Cu元素后,PANAF-Cu中C、H含量的降低表明—NH2直接参与了Cu2+的吸附. 引入P元素后,相对于PANAF-Cu,PANAF-Cu-P中N含量的下降表明Cu与N形成配位键,被封存在纤维上,以上实验结果证明PANAF-Cu的成功改性.

    表 1  不同纤维的元素分析数据
    Table 1.  Elemental analysis data of different fibers
    样品SampleC/%H/%N/%
    1PANF66.114.8623.91
    2PANAF60.305.8922.77
    3PANAF-Cu55.285.4922.57
    4PANAF-Cu-P55.765.6521.91
     | Show Table
    DownLoad: CSV

    pH值是决定吸附效果的关键因素. 图4表明,pH值在3—7时,PANAF-Cu对磷酸盐的吸附量随着pH的升高而迅速增大,并在pH=7时达到最大值26.99 mg·g−1. 聚丙烯腈纤维的氨基的非选择性吸附是以静电作用形式产生的,因此,带正电的表面可以增强带负电的磷酸根阴离子的吸附. 其后通过配体的交换让表面负载的Cu2+对磷的进行选择性吸附. 在pH值在5—8的条件下,PANAF-Cu对磷酸盐的吸附量都能维持在较好的水平,吸附量仍能保持到10 mg·g−1以上. 表明固载铜离子的胺化改性纤维具有较高且稳定的磷酸盐去除效率.

    图 4  pH值对纤维吸附磷酸盐的影响
    Figure 4.  Effect of pH value on fiber adsorption of phosphate

    分别研究了在288、298 、308 K 的3种温度条件下,纤维吸附剂随时间改变对磷酸盐的吸附量的变化. 3条曲线的变化趋势大致相同,前10分钟内吸附速度较快,随后吸附速率减缓,在30 min左右基本达到吸附平衡. 这表明,在刚开始吸附阶段,吸附剂表面暴露的大量活性位点可以很迅速地捕获水中的磷酸盐. 随着时间的推移,吸附剂的表面吸附活性位点逐渐达到饱和,吸附过程随之减慢. 为深入了解PANAF-Cu对磷酸盐的吸附过程,分别通过拟一级动力学和拟二级动力学对吸附数据进行拟合. 拟合图和动力学参数分别如图5表2所示,在288、298、308 K等3种温度下,拟二级动力学模型的R2均高于拟一级动力学模型;而且,用拟二级动力学模型拟合的qe值也更贴近于实际的吸附量. 因此,该吸附剂对磷酸盐的吸附过程更加倾向于化学吸附[25].

    图 5  PANAF-Cu对磷酸盐的吸附动力学模型
    Figure 5.  Adsorption kinetic model of phosphate by PANAF-Cu
    表 2  PANAF-Cu对磷酸盐的动力学参数
    Table 2.  Kinetic parameters of PANAF-Cu on phosphate
    T/K 拟一级动力学模型Quasi-first-order kinetic model 拟二级动力学模型Quasi-second-order kinetic model
    K1/ min qe /(mg·g−1 R2 K2 /min−1 qe/ (mg·g−1 R2
    288 0.824 19.781 0.754 0.056 21.533 0.952
    298 0.999 20.700 0.688 0.066 22.237 0.931
    308 0.927 21.754 0.627 0.073 23.379 0.906
     | Show Table
    DownLoad: CSV

    为了阐明PANAF-Cu对磷酸盐的吸附模式和吸附性能,在室温下,对不同初始磷酸盐浓度下进行了吸附等温实验. 实验发现,吸附剂对磷酸盐的吸附能力伴随着磷酸盐初始浓度的升高而增强,直至吸附饱和. 这可能是因为在较低的磷酸盐浓度下,磷的配位位点更多,随着磷浓度的提高,活性吸附位点也逐渐达到饱和,吸附量不再升高. 利用Langmuir和Freundlich吸附等温线模型对数据进行拟合,通过拟合得到的图和相关数据分别位于图6表3.

    图 6  PANAF-Cu对磷酸盐的吸附等温线模型
    Figure 6.  Isothermal model of phosphate adsorption by PANAF-Cu

    表3可以看出,Langmuir模型拟合曲线的回归参数大于Freundlich模型,说明PANAF-Cu对磷酸盐的吸附更适合于Langmuir模型. 因此,吸附剂对磷酸盐的吸附更趋向于均匀的单分子层化学吸附. 通过Langmuir模型估算PANAF-Cu对磷酸盐的最大吸附量为49.03 mg·g−1.

    表 3  PANAF-Cu对磷酸盐的等温学参数
    Table 3.  Isothermal parameters of PANAF-Cu on phosphate
    Langmuir Freundlich
    qe /(mg·g−1 KL/(L·mg−1 R2 KF /(mg·g−1·(L·mg−11/n 1/n R2
    49.026 20.258 0.995 3.242 0.659 0.982
     | Show Table
    DownLoad: CSV

    为测定PANAF-Cu对磷酸盐去除的选择性,选定硫酸盐、氯化物、硝酸盐和碳酸盐为代表性的共存阴离子. 在浓度为1×10−3 mol·L−1的磷酸盐中分别加入同等浓度的Cl、NO3、CO32-以及SO42-等共存离子溶液,探究PANAF-Cu对磷酸盐的吸附能力,结果见图7. 结果表明, 4种共存离子对PANAF-Cu吸附磷酸盐的影响如下:SO42-﹥CO32-﹥Cl﹥NO3. 其中NO3对磷酸盐的吸附影响最小. SO42-和CO32-比Cl和NO3更有竞争力,可能是因为硫酸盐和碳酸盐作为二价离子具有更高的电荷密度,比单价阴离子能更迅速地被吸附. 以上实验说明PANAF-Cu在实际水体中也能在较多阴离子的影响下具有很好的除磷效果.

    图 7  共存离子对PANAF-Cu吸附磷酸盐的影响
    Figure 7.  Effect of coexisting ions on phosphate adsorption by PANAF-Cu

    XPS分析进一步揭示了吸附剂的化学状态和元素组成. 图8显示了吸附前后PANAF-Cu纤维的XPS光谱,与PANAF相比,PANAF-Cu出现了新的Cu元素的峰(图8a),这表明Cu2+成功的固载到了胺化纤维上,吸附后的纤维中出现了一个133.5 eV的信号峰,这是由P 2p轨道引起的,表明磷酸盐被纤维成功捕获(图8b). Cu2+对磷酸盐吸附的贡献由纤维吸附后Cu元素的高分辨率光谱证明(图8 c-d),对比吸附前的纤维,Cu的高分辨率光谱发现,PANAF-Cu-P的高分辨率Cu 2p光谱被分解成两个峰,最初位于934.73 eV的Cu—N键结合能下降到932.61 eV,这可以归因于来自磷酸盐的P原子为Cu提供了额外的电子,形成了新的N-Cu-P配位键,从而增加了Cu元素电子云密度,降低了结合能,这证实了改性纤维表面的Cu2+通过配位吸收起到了对P的固化作用. 即表明络合-配体相互作用是该吸附过程的主要机制[26]. 根据N的吸附前后的高分辨率光谱(图8 e-f)发现原本位于400.62 eV 的—NH2(—NH)键结合能下降到399.93 eV,氨基与Cu离子形成Cu-N的配位结构,纤维表面的Cu2+通过和磷酸盐中P—O键作用形成新的N-Cu-P配位去除磷酸盐,该基团的移动表明含氮官能团在PANAF-Cu对废水中的磷酸盐的吸附中起着重要作用. 因此根据上述结果,可以推断PANAF-Cu对磷酸盐的有效吸附主要依赖于纤维表面的Cu-N配位结构,从而形成新的N-Cu-P配位结构.

    图 8  功能化纤维吸附磷酸盐前后的XPS谱图
    Figure 8.  XPS spectra of functionalized fibers before and after phosphate adsorption
    (a)PANAF-Cu吸附磷酸盐前后的XPS总谱图,(b)P 2p的高分辨光谱图,(c-d)PANAF-Cu吸附磷酸盐前、后的Cu 2p的高分辨光谱图,(e-f)PANAF-Cu吸附磷酸盐前、后的N 1s的高分辨光谱图
    (a) XPS survey spectra of PANAF-Cu before and after phosphate adsorption, (b) High resolution XPS spectrum of P2p, (c-d) High resolution XPS spectrum of Cu2p before and after phosphate adsorption, (e-f) High resolution XPS spectrum of N1s before and after phosphate adsorption

    为探究不同解吸剂对磷酸盐的解吸率影响,进行对比实验(表4),发现HCl、NaCl、C6H8O7(柠檬酸)和EDTA(乙二胺四乙酸二钠)对磷酸盐的解吸率分别为52.50%、2.50%、87.50%和97.50%,EDTA的解吸率最高为97.5%. 从图9可以看出,经过8次循环后,PANAF-Cu对磷酸盐的解吸率基本稳定在90%以上,相应的解吸率也保持在95%以上,表明PANAF-Cu具有多重吸附和再生的优良特性.

    表 4  不同洗脱液对PANAF-Cu吸附磷酸盐后的解吸率
    Table 4.  Desorption rate of phosphate adsorbed by different eluents to PANAF-Cu
    洗脱剂Eluent 浓度/(mmol·L−1)Concentration V/mL T/ h 解吸率/%Desorption rate
    HCl 1 50 1 52.5
    NaCl 1 50 1 2.5
    C6H3O7 1 50 1 87.5
    EDTA 1 50 1 97.5
     | Show Table
    DownLoad: CSV
    图 9  PANAF-Cu的循环利用
    Figure 9.  Recycling of PANAF-Cu

    用初始浓度为2 mg·L−1的磷酸盐溶液利用恒流泵以0.5 mL·min−1的速率进行连续流动实验. 每隔50 mL测试出水中的磷酸盐浓度,就可以绘制出磷酸盐的穿透曲线,如图10所示. 实验发现,随着出水量的增加,出水中的磷酸盐浓度也随之增加. 当出水量小于2700 mL时,磷酸盐去除率维持在99%以上,大于2700 mL后,对硫酸盐的去除率大幅度下降. 这些结果皆说明PANAF-Cu在模拟自然水体和流动的水体条件下的具有优异除磷效果.

    图 10  磷酸盐溶液穿透曲线
    Figure 10.  Phosphate solution penetration curve

    本研究进一步探究PANAF-Cu在实际水体的应用效果,测试了PANAF-Cu对巢湖(自然水体)磷污染水体中对磷的吸附能力. 为了更好地说明问题,将采集的水样的磷酸盐浓度调整为1000 µg· L−1 P. 分别将0、5、10、20、40、60 mg的PANAF-Cu置于10 mL上述水样中搅拌24h,利用ICP测定剩余磷酸盐浓度,测定结果见表5. 实验表明,当PANAF-Cu添加量超过20 mg时,磷酸盐浓度即可降至100 µg·L−1以下,已低于湖泊富营养化的最小磷浓度200 µg·L−1. 可见,本研究制备得到的少量PANAF-Cu在实际水体中也可以有效的降低水体的富营养化程度.

    表 5  PANAF-Cu对磷酸盐的吸附极限测试
    Table 5.  Adsorption limit test of phosphate by PANAF-Cu
    PANAF-Cu的质量Quality of PANAF-Cu 体积/ mLVolume 时间/ hTime 磷酸盐浓度/(µg·L−1 P)Phosphate concentration
    0 10 24 1113
    5 10 24 759
    10 10 24 393
    20 10 24 98
    40 10 24 92
    60 10 24 90
     | Show Table
    DownLoad: CSV

    为了评估功能纤维吸附剂的吸附效果,表6列出了近年来报道的一些用于去除废水P的吸附剂材料. 值得注意的是,本工作中合成的铜胺负载纤维可以在较温和的反应条件下就可以获得较高的吸附能力. 此外,与表中列举的其他吸附剂有限的P吸附能力相比,接枝了Cu-N配体结构的功能化纤维表现出了更高的P容量和更快的吸附速率. 这可以归因于配位中心的铜离子和-NH2中的N原子之间的配位模式所引起的铜离子的高反应性以及形成的N-Cu-P之间的独特结合机制. 此外,PANAF-Cu在循环使用8次以后依然能够有效地去除磷酸盐. 总的来说,与目前报道的磷酸盐选择性吸附材料相比,本课题中报道的功能纤维吸附剂在常温下具有更高的反应活性和更好的选择性吸附性能.

    表 6  与其他除磷吸附剂的比较
    Table 6.  Comparison with other phosphorus removal adsorbent
    吸附剂Adsorbent 吸附时间Adsorption time 最大吸附量(mg·g−1)Maximum adsorption capacity 循环次数Number of cycles 参考文献
    黏土-牡蛎壳复合吸附材料 7 d 10 [27]
    鸟蛤壳粉 20 min 7.1 [28]
    掺杂淀粉的磷石膏和磷矿浮选尾矿 60 min 31.28 [29]
    淀粉包裹的Fe3O4纳米颗粒 90 min 7.73 3 [30]
    磁性淀粉基Fe3O4黏土聚合物(CIONP) 2 h 3.12 3 [31]
    炼钢渣 72 h 10.21 [32]
    掺杂SiO2的活性炭 1 h 0.65 [33]
    固载Fe2+的活性炭 4 h 14.12 [34]
    固载铜离子的功能化腈纶纤维(PANAF-Cu) 24 h 26.99 8 本研究
     | Show Table
    DownLoad: CSV

    以聚丙烯腈纤维为原料,通过胺化改性使得聚丙烯腈纤维表面固载胺基,在通过胺基与铜的配位作用,成功合成具有Cu-N配位结构的新型吸附剂(PANAF-Cu). 在pH=7时达到吸附量最大值26.99 mg·g−1,pH值在5—8的条件下,吸附量仍能保持到10 mg·g−1以上. 表明固载铜离子的胺化改性纤维具有较高且稳定的磷酸盐去除效率. PANAF-Cu的吸附过程更符合伪二级动力学吸附模型,吸附等温学拟合结果更适合Langmuir等温模型,表明P在PANAF-Cu属单分子层吸附,在一定温度内,对磷酸盐的去除效果随着温度升高而增加. 通过吸/脱附循环性能试验,经过8次循环后,PANAF-Cu对磷酸盐的吸附率基本稳定在90%以上,相应的解吸度效率也保持在95%以上,PANAF-Cu良好的除磷可循环性;吸附极限试验表明当出水量达到2700 mL时,对磷酸盐的去除率仍达到99%,具有较高的实际应用能力. XPS解析表明,PANAF-Cu对磷酸盐的吸附机理主要为纤维表面形成新的N-Cu-P配位结. PANAF-Cu对治理磷污染的废水具有很大的应用优势,是一种高效净化与回收水体磷酸盐的吸附材料.

  • 图 1  污泥高、低含水率造粒情况

    Figure 1.  Granulation of sludge with high and low moisture content

    图 2  絮状污泥在105 ℃下的含水率及干燥速率随时间的变化

    Figure 2.  Variation of moisture content and drying rate of flocculent sludge at 105 °C with time

    图 3  污泥颗粒在105 ℃下的含水率随时间的变化

    Figure 3.  Variation of the moisture content of sludge particles at 105 °C with time

    图 4  不同含水率污泥所造颗粒的长度分布

    Figure 4.  Length distribution of particles produced by sludge with different water contents

    图 5  不同含水率污泥所造颗粒的堆积密度

    Figure 5.  Bulk density of particles produced by sludge with different water contents

    图 6  不同含水率污泥所造颗粒的形貌特征

    Figure 6.  Morphological characteristics of particles produced by sludge with different water contents

    图 7  不同含水率污泥所造颗粒的截面特征

    Figure 7.  Cross-sectional characteristics of particles made by sludge with different water contents

    图 8  五家污水厂颗粒截面的灰度共生矩阵(GLCM)分析

    Figure 8.  Grayscale Co-occurrence Matrix (GLCM) analysis of particle cross-sections from five wastewater plants

    图 9  污泥颗粒所制活性炭的表面形貌特征

    Figure 9.  Surface morphology characteristics of activated carbon made from sludge particles

    图 10  污泥颗粒所制活性炭在模拟废水中的 COD 去除率

    Figure 10.  COD removal rate of activated carbon made from sludge particles in simulated wastewater

    表 1  原污泥基本性质

    Table 1.  Basic properties of raw sludge

    含水率 pH 密度/(g·cm−3 温度/ ℃ SV30 TSS/(g·L−1 VSS/(g·L−1 SRF/(1013·m−1·Kg−1
    99.87% 7.10 1.002 5 19.7±2 49% 21.26±0.3 14.36±0.1 4.68
      注:SV30表示污泥沉降比;TSS表示总悬浮固体;VSS表示挥发性悬浮固体;SRF表示污泥比阻。以上指标测定参考CJ/T 221—2005 城市污水处理厂污泥检验方法。
    含水率 pH 密度/(g·cm−3 温度/ ℃ SV30 TSS/(g·L−1 VSS/(g·L−1 SRF/(1013·m−1·Kg−1
    99.87% 7.10 1.002 5 19.7±2 49% 21.26±0.3 14.36±0.1 4.68
      注:SV30表示污泥沉降比;TSS表示总悬浮固体;VSS表示挥发性悬浮固体;SRF表示污泥比阻。以上指标测定参考CJ/T 221—2005 城市污水处理厂污泥检验方法。
    下载: 导出CSV

    表 2  污泥数码照及电镜图汇总

    Table 2.  Summary of sludge digital photography and electron microscopy images

    名称编号
    5%含水率污泥(a1) 距样品上空40 cm形貌;(a2) SEM电镜x100形貌;(a3) SEM电镜x8 000形貌
    10%含水率污泥(b1) 距样品上空40 cm形貌;(b2) SEM电镜x100形貌;(b3) SEM电镜x8 000形貌
    20%含水率污泥(c1) 距样品上空40 cm形貌;(c2) SEM电镜x100形貌;(c3) SEM电镜x8 000形貌
    30%含水率污泥(d1) 距样品上空40 cm形貌;(d2) SEM电镜x100形貌;(d3) SEM电镜x8 000形貌
    40%含水率污泥(e1) 距样品上空40 cm形貌;(e2) SEM电镜x100形貌;(e3) SEM电镜x8 000形貌
    50%含水率污泥(f1) 距样品上空40 cm形貌;(f2) SEM电镜x100形貌;(f3) SEM电镜x8 000形貌
    60%含水率污泥(g1) 距样品上空40 cm形貌;(g2) SEM电镜x100形貌;(g3) SEM电镜x8 000形貌
    名称编号
    5%含水率污泥(a1) 距样品上空40 cm形貌;(a2) SEM电镜x100形貌;(a3) SEM电镜x8 000形貌
    10%含水率污泥(b1) 距样品上空40 cm形貌;(b2) SEM电镜x100形貌;(b3) SEM电镜x8 000形貌
    20%含水率污泥(c1) 距样品上空40 cm形貌;(c2) SEM电镜x100形貌;(c3) SEM电镜x8 000形貌
    30%含水率污泥(d1) 距样品上空40 cm形貌;(d2) SEM电镜x100形貌;(d3) SEM电镜x8 000形貌
    40%含水率污泥(e1) 距样品上空40 cm形貌;(e2) SEM电镜x100形貌;(e3) SEM电镜x8 000形貌
    50%含水率污泥(f1) 距样品上空40 cm形貌;(f2) SEM电镜x100形貌;(f3) SEM电镜x8 000形貌
    60%含水率污泥(g1) 距样品上空40 cm形貌;(g2) SEM电镜x100形貌;(g3) SEM电镜x8 000形貌
    下载: 导出CSV

    表 3  污泥截面电镜图汇总

    Table 3.  Summary of sludge cross-section electron microscopy diagrams

    名称编号
    5%含水率污泥造粒截面(a1) SEM电镜x220形貌 (a2) SEM电镜x1 500形貌
    30%含水率污泥造粒截面(b1) SEM电镜x220形貌 (b2) SEM电镜x1 500形貌
    60%含水率污泥造粒截面(c1) SEM电镜x300形貌 (c2) SEM电镜x1 500形貌
    名称编号
    5%含水率污泥造粒截面(a1) SEM电镜x220形貌 (a2) SEM电镜x1 500形貌
    30%含水率污泥造粒截面(b1) SEM电镜x220形貌 (b2) SEM电镜x1 500形貌
    60%含水率污泥造粒截面(c1) SEM电镜x300形貌 (c2) SEM电镜x1 500形貌
    下载: 导出CSV

    表 4  活性炭表面电镜图汇总

    Table 4.  Summary of activated carbon surface electron microscopy diagrams

    名称编号
    5%含水率污泥制备活性炭(a) SEM电镜x5 000形貌
    10%含水率污泥制备活性炭(b) SEM电镜x5 000形貌
    20%含水率污泥制备活性炭(c) SEM电镜x5 000形貌
    30%含水率污泥制备活性炭(d) SEM电镜x5 000形貌
    40%含水率污泥制备活性炭(e) SEM电镜x5 000形貌
    50%含水率污泥制备活性炭(f) SEM电镜x5 000形貌
    60%含水率污泥制备活性炭(g) SEM电镜x5 000形貌
    名称编号
    5%含水率污泥制备活性炭(a) SEM电镜x5 000形貌
    10%含水率污泥制备活性炭(b) SEM电镜x5 000形貌
    20%含水率污泥制备活性炭(c) SEM电镜x5 000形貌
    30%含水率污泥制备活性炭(d) SEM电镜x5 000形貌
    40%含水率污泥制备活性炭(e) SEM电镜x5 000形貌
    50%含水率污泥制备活性炭(f) SEM电镜x5 000形貌
    60%含水率污泥制备活性炭(g) SEM电镜x5 000形貌
    下载: 导出CSV
  • [1] 阮晓阳. 污泥处理处置与资源化利用途径[J]. 化学工程与装备, 2022(10): 277-278+281.
    [2] JIAFU Q, CHUCHU Z, ZHENGUO C, et al. Converting wastes to resource: Utilization of dewatered municipal sludge for calcium-based biochar adsorbent preparation and land application as a fertilizer[J]. Chemosphere, 2022, 298: 134302. doi: 10.1016/j.chemosphere.2022.134302
    [3] 齐永正, 王逸, 朱忠泉, 等. 污泥脱水处理技术研究综述[J]. 辽宁化工, 2020(49): 1117-1120. doi: 10.3969/j.issn.1004-0935.2020.09.022
    [4] 周远涛, 张琦, 王一飞, 等. 临夏某污水厂污泥处置工艺效能分析[J]. 海河水利, 2023(4): 28-30+60. doi: 10.3969/j.issn.1004-7328.2023.04.007
    [5] 周翠红, 曾婉琳, 陈佳蕊, 等. 响应曲面法优化污泥颗粒干化分析[J]. 北京石油化工学院学报, 2021, 29(4): 51-55.
    [6] 张伟, 赵树明. 垃圾焚烧发电厂协同处置市政污泥应用研究[J]. 资源节约与环保, 2024(3): 50-54. doi: 10.3969/j.issn.1673-2251.2024.03.011
    [7] ZHIDONG C, YICHEN H, MINGYU L, et al. Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating drying, incineration, and power generation processes[J]. Applied Energy, 2022, 327: 120093-120143. doi: 10.1016/j.apenergy.2022.120093
    [8] 乔翅嵩, 顾登海, 卢广亮, 等. 城镇生活污水处理厂污泥资源化利用研究进展[J]. 工业水处理, 2024, 12(2): 1-25.
    [9] 秦洁, 伏小勇, 陈学民, 等. 造粒处理对城镇污泥蚯蚓堆肥微生物群落碳源利用的影响[J]. 环境科学学报, 2021, 41(12): 4995-5003.
    [10] RAO B, TU H, JIA H, et al. The cooperative effect of mechanical dewatering and thermal drying for activated sludge deep reduction[J]. Process Safety and Environmental Protection, 2024, 185: 9-20. doi: 10.1016/j.psep.2024.02.053
    [11] 赵水钎, 段妮娜, 谭学军, 等. 城镇污泥“厌氧消化+土地利用”技术路线经济性分析[J]. 环境工程, 2024, 42(2): 1-9.
    [12] 陶光朝. 深度脱水藕合超高温好氧发酵处理市政污泥的应用[J]. 广东化工, 2023, 50(14): 146-147+128. doi: 10.3969/j.issn.1007-1865.2023.14.048
    [13] 沈仿, 温小萍, 卢灿, 等. 市政污泥处理与资源化利用研究进展[J]. 能源研究与管理, 2022, 14(3): 36-41.
    [14] 林敏, 龚媛媛, 艾仙斌, 等. 南昌市污泥处理现状与展望[J]. 能源研究与管理, 2019(4): 1-3.
    [15] 王琳琳. 垃圾焚烧发电厂污泥掺烧技术应用[J]. 能源与节能, 2020(6): 89-91. doi: 10.3969/j.issn.2095-0802.2020.06.037
    [16] 赵莹莹, 赵青玲. 污泥资源化利用技术的研究进展[J]. 能源研究与利用, 2023(5): 40-44. doi: 10.3969/j.issn.1001-5523.2023.05.008
    [17] 陈彦秀. 城市剩余污泥脱水与资源化研究[D]. 沈阳: 大连交通大学, 2022.
    [18] 姜奇伦, 吴志根, 陈凯盛, 等. 市政造粒污泥及返混堆叠低温干燥特性分析[J]. 化学工程, 2023, 51(12): 6-9.
    [19] QIUSHUANG Z, CHONGCHONG H, LONG N. Kinetic analysis of sludge low-temperature drying experiments: Apparent activation energy consistency[J]. Thermal Science and Engineering Progress, 2023, 40: 101798-101799. doi: 10.1016/j.tsep.2023.101798
    [20] 汪泳. 市政污泥干燥特征及污泥中温带式干燥工艺应用研究[D]. 天津: 天津大学, 2014.
    [21] 周锟. 家用小型电炉炉丝断面形貌分析[J]. 科技与创新, 2023(5): 112-115.
    [22] 石焱, 王文军, 孟令一, 等. 负载Fe2O3对活性炭微波脱硫脱硝的影响[J]. 矿产综合利用, 2024, 12(2): 1-13. doi: 10.3969/j.issn.1000-6532.2024.02.001
  • 加载中
图( 10) 表( 4)
计量
  • 文章访问数:  438
  • HTML全文浏览数:  438
  • PDF下载数:  20
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-10-30
  • 录用日期:  2025-01-19
  • 刊出日期:  2025-02-26
李国鑫, 李锋, 刘锋, 周妍. 污泥含水率对污泥颗粒干燥速率和形貌特征的影响[J]. 环境工程学报, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128
引用本文: 李国鑫, 李锋, 刘锋, 周妍. 污泥含水率对污泥颗粒干燥速率和形貌特征的影响[J]. 环境工程学报, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128
LI Guoxin, LI Feng, LIU Feng, ZHOU Yan. The impact of sludge moisture content on the drying rate and morphological characteristics of sludge particles[J]. Chinese Journal of Environmental Engineering, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128
Citation: LI Guoxin, LI Feng, LIU Feng, ZHOU Yan. The impact of sludge moisture content on the drying rate and morphological characteristics of sludge particles[J]. Chinese Journal of Environmental Engineering, 2025, 19(2): 404-413. doi: 10.12030/j.cjee.202410128

污泥含水率对污泥颗粒干燥速率和形貌特征的影响

    通讯作者: 周妍(1993—),女,博士,讲师,研究方向为颗粒化技术,zhouyan@usts.edu.cn
    作者简介: 李国鑫(1999—),男,硕士研究生,研究方向为废水处理与资源化利用,liguoxin1999@163.com
  • 苏州科技大学环境科学与工程学院,苏州 215009
基金项目:
2023年江苏省“双创博士”(JSSCBS20230456)

摘要: 随着中国经济的快速发展和城市化进程的加速,城镇污水处理领域产生的大量污泥对环境和经济造成了较大的负担。因此,通过对不同含水率污泥造粒所得污泥颗粒的干燥速率、形貌特征及资源化利用研究,旨在为污泥的减量化、无害化和资源化提供了理论依据和技术支持。通过研究发现:1)污泥造粒能有效提升干燥速率,且提升效果在利用含水率为20%至30%之间的污泥造粒时最明显。2)随着造粒时污泥含水率的升高,成型颗粒的堆积密度逐渐降低、结构强度逐渐增大、微观结构从裂纹沟壑逐渐转变为平整光滑。3)利用污泥颗粒制备的活性炭具有较好的吸附性能,且吸附效果在采用含水率为30%至40%之间的污泥造粒时达到最佳。这些发现有助于实现污泥的高效处理和资源化利用,对促进环境保护和可持续发展具有重要意义。

English Abstract

  • 近年来,随着我国经济迅速增长和城市化进程持续推进,城镇污水处理领域取得了显著进展。与此同时,污水处理过程中产生的剩余污泥也带来了不小的负担,需要处理厂投入大量资金进行有效处理[1]。因此,探索在现有污泥脱水工艺的基础上引入造粒处理技术,有助于一定程度上应对当前污泥处理中存在的高投资、高运行费用等问题,同时也可提升污泥处理效率,增强污泥后续资源化利用的效率。

    当前,我国在污泥处理技术方面面临诸多挑战:虽然相关技术已趋于成熟,但依然存在不少不足之处,主要体现在污泥浓缩、脱水、干化等处理方式以及填埋、焚烧等处理手段方面,同时,对污泥的高效回收利用技术亟待完善[2]。污水处理厂的剩余污泥主要源自二沉池,其特性主要涉及物理、化学和微生物学等方面[3]。在这些特性中,污泥的物理特征主要包括含水率和热值等指标[4]。污泥处理方法通常取决于其含水率以及最终处置方式的确定。为便于外运,需要将污泥含水率降至80%以下。采用干燥焚烧方式可有效降低含水率,减少污泥体积,但同时也会消耗大量能源[5]。经实验研究表明,通过对干化污泥进行造粒处理后,不仅可以有效避免扬尘和提高干燥效率,还能大幅降低能源消耗[6]。将经过造粒处理的污泥与焚烧厂协同焚烧,对焚烧系统的运行稳定性和经济性具有显著的积极影响[7]。污泥颗粒还可以用于制备活性炭,能够吸附污水中有机污染物及重金属等,从而在污水处理工艺中发挥有效作用[8]。此外,城镇污泥造粒技术的应用还能够有效提升微生物群落在碳源利用方面的优势性和均衡性,如对蚯蚓堆肥系统中微生物的碳源利用具有显著影响。秦洁等[9]学者曾描述了一项直接利用污泥造粒进行城镇污泥预处理的方法,该方法操作简便、高效,不仅产出质量稳定的有益堆肥产品,而且省去了繁琐的添加混合膨化材料的步骤,避免了引入新的难降解物质而带来的堆肥过程风险。

    目前国内污泥处理处置有4条主流工艺路线:1)干化+焚烧/协同焚烧/建材利用[10];2)预处理+厌氧消化+脱水+土地利用[11];3)好氧发酵+土地利用[12];4)深度脱水+协同焚烧/填埋[13]。污泥的处置方式可以归纳为直接填埋、堆肥、焚烧处置及材料利用等[14]。其中直接填埋是最常见的污泥处置方式之一,污泥填埋操作简单,但未经处理直接填埋会对土地造成二次污染[15];同样地,污泥堆肥也存在相似的问题,污泥中的各类难降解有机物,包括残留药物、化学品、干扰素等,在堆肥过程中会产生大量的恶臭气体以及污泥本身所含有的有害物质都需要处理以免造成二次污染[16]。污泥干化+焚烧处置工艺是污泥减量化、无害化效果最好的处置方式之一[17]。污泥通常具备高含水率,因此需进行脱水处理以便进行后续处理。据研究表明,污泥的脱水效果受多种因素影响,其中造粒尺寸对污泥颗粒干燥具有显著影响[18]

    本研究以苏州市某家污水处理厂脱水污泥为研究对象,在传统污泥干化过程中加入造粒处理。通过分析污泥含水率等参数,阐述了污泥脱水过程的特性,通过造粒处理对传统污泥干化工艺进行优化,并针对造粒处理后颗粒污泥的长度分布、堆积密度以及形貌特征进行分析,为进一步研究污泥处理和资源化利用提供了理论基础和技术支持。污泥干化造粒技术不仅可以有效降低污泥体积,解决污泥的安全处置问题,而且减少了自然资源的使用,达到固体废物的资源化、无害化利用,实现变废为宝。通过对多种污泥造粒后性状研究,减少处理过程中能源的消耗以及污泥对环境的危害,为后期污泥的合理处置和研究提供理论依据和实践经验。

    • 试验用泥取自苏州某污水处理厂剩余污泥,经过24 h沉淀后,去除上清液,测定污泥pH、含水率等,其基本特征如表1所示,采集的污泥保存于4 ℃冰箱中,待用。

    • 本试验仪器有电热鼓风干燥箱(GZX-9140MBE,上海博迅仪器生物有限公司),便携式离子计(PXBJ-287L型,上海雷磁有限公司),电子分析天平(ME204E,梅特勒-托利多上海有限公司),旋转制粒机(XL型,常州佳发制粒干燥设备有限公司),1 700 ℃下开门马弗炉(SGM M1700-12,西格马上海高温电炉有限公司)等。

    • 取原污泥装入玻璃培养皿(Φ=100 mm)中进行碱性预处理,加入适当剂量的氢氧化钠(NaOH)(4 mol·L−1)将pH调节至10。完成后将试样放入电热鼓风干燥箱中,设定温度 105 ℃,每隔0.5 h快速拿出称重,直至恒重为止。重复多组实验,检测高温脱水后的污泥含水率,计算确定高温热处理对污泥脱水不同时间的含水率。

      取原污泥装入多组玻璃培养皿中,并通过适当剂量的氢氧化钠(NaOH)(4 mol·L−1)将pH调节至10。待每组污泥试样碱处理完成后,试样放入电热鼓风干燥箱中,设定温度105 ℃,待每组污泥试样高温热处理后干燥至一定含水率,取不同含水率污泥进行旋转造粒,造粒完成后再次干燥至恒重,分析不同含水率与颗粒形态的关系以及污泥造粒前后干燥速率,堆积体积和能量消耗(图1)。污泥造粒是将一定含水率的絮状污泥制成颗粒污泥,从而能够改善污泥的通气性,改变了污泥的物理性状,增加了污泥的比表面积。

      取相同质量不同含水率污泥颗粒采用直接热解法(600 ℃热解2 h)制备活性炭,将制备好的活性炭材料放入SEM,观察其孔结构,之后将其放入模拟废水中静置,研究其对COD去除效果。

    • 1)污泥含水率。污泥含水率的测定采用热干燥法,将均匀的污泥样品放在称至恒重的玻璃培养皿中,放入105 ℃烘箱内烘至恒重,减少的重量以百分率计为污泥含水率,进行多组实验取平均值。污泥含水率如式(1)所示。

      式中:W为污泥各时间段的含水率数值,%;m1为干燥过程t时刻样品中含水质量,g;m2为样品除去水分的质量,g;计算结果表示至小数点后两位。

      2)污泥干燥速率。污泥失水效果可用单位质量的平均干燥速率如式(2)所示。

      式中:V1为污泥颗粒单位质量的平均干燥速率,g·min−1m1为污泥颗粒初始质量,g;mt为污泥颗粒干燥至 t 时刻的质量,g;Δt为计算时间间隔。

      3)污泥长度。将造粒完成后的不同含水率污泥样品分别通过0.1、0.2、0.3、0.5、0.8、0.9、1.25、2、2.5、2.8、3.2、4 mm标准筛进行筛分称量,测定污泥长度分布,每个样品测定3次后取平均值。

      4)污泥堆积密度。污泥堆积密度测定采用容积法,颗粒污泥从漏斗口在一定高度自由落下充满确定容积的容器,测定松装状态下比重杯内单位体积污泥的质量,即污泥松散堆积密度。

      污泥松散堆积密度如式(3)所示。

      式中:ρ为污泥松散堆积密度,g·cm−3m1为污泥颗粒和容器总质量,g;m0为空容器质量,g;V为容器体积,cm3

      将100 ml固定体积的空杯与延长筒链接组成一个振实密度组件,然后将污泥填满延长筒盖上盖,将组件固定到定位孔中。将容器中污泥振实,直到体积不再减少为止,用玻璃棒将容器口刮平。然后称量污泥和容器的总质量计算振实堆积密度。

      污泥振实堆积密度如式(4)所示。

      式中:ρ1为污泥振实堆积密度,g·cm−3mt为振实污泥和容器总质量,g;mc为空容器质量,g;V1为空容器体积,cm3

      5)污泥微观结构。污泥样本在烘箱里烘干后,采用Quanta FEG 250扫描电子显微镜(SEM)对污泥样本进行分析。

    • 在本研究中,针对污泥在105 ℃下的含水率变化进行了多组实验,试图全面掌握其变化规律。实验结果如图2所示,随着干燥时间的延长,污泥的含水率整体呈逐渐下降的趋势。初始含水率为99.87%,经过7 h的干燥后,污泥的含水率基本降至零。干燥速率变化情况显示在0~1.5 h内呈现加速上升的趋势,此时污泥的含水率由99.87%下降至81.62%,表明该时段污泥含水率较高,污泥表层自由水开始受到外部热量的影响进一步脱水[19],干燥速率快速爬升至0.25 g·min−1。在经历平稳后,随后稳定维持至4 h时,干燥速率维持在0.21~0.25 g·min−1,污泥含水率下降至46.53%。这种现象可能源于热传递最初影响到污泥表面,导致表面结构受损形成结痂,使热量无法有效传导至内部,从而干燥速率保持稳定[20];而在4 h后,干燥速率相较之前明显加快,随着干燥时间不断延长,含水率越来越低,含固率不断升高,污泥表面发生龟裂,使空气流通,促进热量传递至内部,增加接触面积,从而显著提高了干燥速率达到最高峰0.348 g·min−1,污泥内外温度趋于一致;随后干燥至6 h时,污泥含水率降至10%以下,由于污泥中水分所剩无几使得干燥速率相应变得缓慢。

    • 本研究首先对不同含水率的污泥进行造粒处理,研究了污泥颗粒的干燥速率变化,详细结果见图3。实验中发现,污泥经过造粒处理后干燥速率显著提升,尤其在含水率较高的情况下,干燥时间显著缩短。这是因为经过造粒处理后,污泥与热空气的接触面积增大,同时部分破坏了污泥内部的结构,因此其脱水性能得到改善。在不同含水率的污泥中,造粒处理对干燥速率的影响不尽相同。60%含水率的污泥在造粒后,干燥速率一开始增大,但后来趋于稳定,总体干燥时间与原始污泥相近;40%~60%含水率的污泥在4.5 h到6.0 h之间,干燥速率基本持平;5%和10%含水率的污泥经过造粒后,干燥速率显著提高,但由于已处于干燥过程的末端,干燥时间并没有显著缩短;当污泥含水率为20%和30%时,其干燥速率存在显著变化,并且相较于原污泥,干燥时间减少了1 h,这表明在这两种含水率下进行污泥造粒处理有助于加快干燥速率、缩短干燥时间、降低能量消耗,可被视为最优化处理节点。另外,实验结果还指出当污泥含水率不低于65%时呈流态状态,丧失了进行制粒的可行性。

    • 根据图4数据显示,5%含水率条件下的污泥,其长度主要分布在0.3~0.5 mm范围,最大长度可达0.9 mm;10%和20%含水率条件下的污泥,0.3~0.5 mm颗粒比例显著增加,并且颗粒逐渐扩大至2.5 mm;含水率30%条件下的污泥,颗粒主要分布在0.2~0.5 mm范围;40%含水率污泥主要以0.1~0.9 mm颗粒污泥为主,并带有0.9~2.8 mm长条状污泥。此现象或许源于污泥含水率过高,难以通过造粒达到饱满颗粒状态;而含水率为50%的污泥颗粒则相对均匀地分布在0.5~3.2 mm之间。这一现象的可能原因在于,污泥颗粒构成较为坚固的细胞结构,在短时间内高温热处理难以充分传递所需的能量,因而无法有效破坏大部分细胞结构,造成后续造粒过程只能破坏较弱的污泥絮体结构,导致颗粒呈现细长条状;含水率达60%的污泥颗粒主要分布在0.8~4 mm范围内,最大粒径可达4 mm。

      据观察得知,含水率30%可被视作一道明显分界,当含水率低于30%时,颗粒呈细小状,且粒径主要分布在0.3~0.5 mm范围内;而当含水率高于30%时,颗粒多呈细长条状,长度相对均匀。不仅如此,我们还可以发现造粒机孔径为1.5 mm,但却出现了较多小于该孔径下的颗粒,说明颗粒在干燥的时候,发生了破碎,而这部分颗粒所占比例越大,说明颗粒的强度越小。而从图中可以看出随着含水率增加,造粒后颗粒强度逐渐增大。

    • 图5可以看出,5%和60%含水率的污泥与其他样本分布存在显著差异。其中,60%含水率的污泥因颗粒较大、形状不规则而导致颗粒间空隙较大,因此其松散密度和振实密度均较低;而5%含水率的污泥由于颗粒较小、形状简单,颗粒间间隙小,因此无论松散密度还是振实密度均远高于其他样本。20%和30%含水率的污泥松散密度与振实密度普遍较高且相互贴合,这可能是由于其既含有较大颗粒又含有细小颗粒,能够有效填补空隙。材料高堆积密度时,其堆积性优异,可以提高容积利用率,适宜于存储和运输,从而实现成本的显著降低;相反,低堆积密度的材料则通常具有较大体积,存储与运输困难,造成成本增加。由此,我们可以根据堆积密度差估算运输污泥时的装载数量,据此,我们可根据堆积密度差推算运输污泥所需的装载量。通常情况下,处理10×104 t生活污水能产生约100 t湿污泥,预计需要13车(每车可装载10 m3);经过造粒后,污泥含水率约为20%~30%,预计需要10车(每车可装载10 m3)。在实验室中将正常湿污泥与造粒后污泥放置在相同50 ml量筒内称量分别得0.129、0.117 kg相当于每车减少2.4 t污泥量,运输成本极大降低,由于呈颗粒状状态,可显著缩短装卸时间,同时对卫生填埋用地需求量减少,现每立方土地可填埋约0.50 t污泥;造粒处理后,污泥含水率在20%~30%范围内,每立方土地可填埋约0.63 t污泥。

    • 利用Quanta FEG 250扫描电子显微镜(SEM)对比不同含水率造粒后污泥表面形貌特征(表2),从图6我们可以观察到,污泥含水率在5%至60%范围内,颜色逐渐加深。当含水率为5%至40%时,呈现黄褐色;50%至60%时,污泥呈现黑色。此外,当含水率为5%时,污泥呈现细小颗粒状并伴有些许粉末,结构松散,形状不规则;含水率为10%至30%时,污泥呈现出分散的细粒状;当含水率为40%时,部分污泥开始出现细条状,但大部分仍呈颗粒状;当含水率为50%时,绝大部分为细条柱状,少部分为颗粒状;当含水率为60%时,几乎全部呈现细条状。由此可见,含水率在造粒过程中对颗粒污泥的外观有显著影响。

      其中图6(a)和图6(b)针对不同含水率5%和10%条件下的电子显微镜图像,呈现出结构松散的砂砾特征,表面呈现出各样的孔洞或孔隙,颗粒大小存在不均匀性;图6(c)则对比了含水率为20%条件下的电子显微镜图像,显示出紧密无孔洞的表面,光滑平整无突起的块状结构,少量球菌和杆菌部分也可观察到;图6(d)和(e)对应于不同倍数下污泥含水率为30%和40%的电子显微镜图。在这些图像中,出现了多块状粘结突起,这些特征逐渐增多。大块片状沉淀物和一些粒状团聚物堆积在孔隙处,表面的突起块状结构也变得更加明显。随着含水率的增加,污泥的形态逐渐演变为条形结构,这一特征在图6(f)和(g)中更为明显,分别对应含水率为50%和60%的情况。值得注意的是,当含水率较低时,结构较为松散无序,表面更为疏松,具有多出断裂面,而随着含水率增加,结构更为细密并且呈现出更多的块状结构。

    • 本研究采用Quanta FEG 250扫描电子显微镜(SEM)对比分析含水率不同的污泥样本经过造粒处理后的截面形貌特征(表3)。可以观察到图7(a1)的断面表现为灰黑色,而其断口呈现出典型的塑性断裂特征[21],且存在明显的深裂痕,形状不规则呈现出明显的粗糙特征,整体表面凹凸不平,具有多条沟壑状裂纹,而这些裂纹主要聚集在截面的中心区域,由图7(a2)可以观察到颗粒发生破碎,裂痕明显,说明该结构强度小;图7(b1)、(b2)表面的裂缝明显减少,仅存少量孔洞和微小裂纹,但仍然具有表面不平整的特点;与之相对应的图7(c1)、(c2)表面平滑且平整,其断口形态较为规则,呈现出脆性断裂的特征[21],并且表面更加致密,具有明显结块现象,说明结构强度大。此外,图7(a)、(b)、(c)的整体形态存在显著差异。污泥经过造粒后显著增加了颗粒的产生力,同时由于含水率的提高导致颗粒截面发生明显变化。

      据此可推断,随着污泥含水率增加,经过造粒处理后,污泥的截面形态从裂纹沟壑逐渐转变为平整光滑,结构也由砂砾状变为块状,由松散变为细密,结构强度增大。

      通过电镜观察发现不同含水率颗粒污泥截面变化,因此在此基础上,选取多家污水厂进行污泥造粒,对不同来源的各种含水率在经过造粒后的污泥截面情况使用灰度共生矩阵(GLCM)方法进行进一步分析。本研究使用Matlab软件中的graycomatrix命令将SEM图像分为9个灰度等级(NumLevels=9),并使用对称性排序方法(Symmetric = true)创建灰度共生矩阵(GLCM),然后分析所得共生矩阵的对比度(Contrast)和同质性(Homogeneity)。其中,对比度反映图像的清晰程度和纹理的深浅程度,对比度越大,图像的纹理沟纹越深;同质性描述的是图像中局部区域的均一性,同质性越大,图像中的纹理越均匀。

      图8为5家污水厂颗粒截面对比度和同质性的分析结果,其中A厂整体对比度保持在0.35~0.80,在20%含水率下为最低点0.35,随后在30%含水率达到最大值0.80;B厂整体对比度保持在0.50~1.35,在30%含水率达到最大值1.33同时也是五家污水厂中对比度最高点,随后在60%含水率下降为最低点0.50;C厂最高点对比度同样为30%含水率,但与其他污水厂不同的是C厂在5%~20% 、40%~60%含水率的对比度趋势与其他厂截然相反且在40%含水率情况下达到所有厂最低值0.32;D厂整体对比度保持在0.30~1.11,在50%含水率达到最大值1.11;E厂整体对比度保持在0.50~1.00,在30%含水率达到最大值0.99。

      A厂同质性维持在0.74~0.83,在30%含水率为最低点0.74,以30%含水率为分界线左侧呈现先升再降趋势,右侧则先升再降再上升;B厂同质性保持在0.68~0.79,在30%含水率为最低点0.68且为5个厂同质性最低值,以30%含水率为分界线左侧同样呈现先升再降趋势,右侧则为单调递增趋势;C厂同质性保持在0.70~0.85,在60%含水率为最低点0.70,以30%含水率为分界线两侧呈现正态分布趋势;D厂同质性维持在0.71~0.84,在50%含水率为最低点0.71,以30%含水率为分界线左侧呈现正态分布,右侧则降至最低点后回升;E厂同质性在0.73~0.81,在30%含水率为最低点0.73,以30%含水率为分界线左侧呈现递减趋势,右侧则与A厂趋势一致;从纵向来看,在30%含水率下5个厂颗粒截面最具有相同性质。

      综上所述,随着含水率的升高颗粒污泥截面呈现先下降后上升再下降的趋势,普遍在30%含水率下对比度最高,说明此时形貌变化最大。该现象同时与污泥颗粒的干燥速率以及长度分布相呼应。

    • 使用扫描电子显微镜对不同含水率制备活性炭材料进行观测(表4),对比分析形貌特征及吸附效果如图9图10所示。可以观察到5%和10%含水率制备活性炭表面光滑,对COD去除率相对较低。相比之下,20%~40%含水率制备活性炭表面性状发生了显著变化。其中,40%含水率制备活性炭材料表面及孔隙内分布有较为丰富的附着物,结构相对疏松,表面孔隙数量较多且分布均匀,而活性炭表面丰富的多孔结构决定了活性炭较好的吸附能力[22]。因此表明此条件下制备的活性炭材料具有较好吸附性能,且通过对COD去除率也印证其吸附效果最好。最后50%、60%含水率制备活性炭材料表面大块片状沉淀物堆积在孔隙处,这与原始高含水率污泥颗粒表面形貌相对应,通过对COD去除率发现其吸附效果较差且不稳定。

    • 1)城市生活污水处理厂的污泥在处理之前,可以通过干燥造粒技术将其制成颗粒状,有效提升干燥效率,且在利用含水率20%~30%之间造粒时效果最为明显。

      2)随着造粒时污泥含水率逐渐升高,成型颗粒的堆积密度逐渐降低、结构强度逐渐增大、微观结构从裂纹沟壑逐渐转变为平整光滑。

      3)利用污泥颗粒制备的活性炭具有较好的吸附性能。其中含水率在30%~40%时制备的活性炭吸附效果达到最佳,尤其是40%含水率下制备的活性炭,因其表面及孔隙内分布有丰富的附着物,结构疏松,孔隙数量多且分布均匀,从而表现出较好的吸附能力。

    参考文献 (22)

返回顶部

目录

/

返回文章
返回