-
农村生活污水的可持续治理是建设宜居宜业和美乡村的重要内容之一。传统的农村生活污水治理方式存在建设及运维成本高、污染物收集率低、运行不稳定、运维复杂等问题,是一种消耗能源处理资源的非可持续治理路径。农村生活污水的资源化利用已成为共识,在地形条件复杂或农房较为分散的农村地区,基于黑灰分离的分散式污水资源化利用系统是更为有效且可持续的治理模式[1]。
生活污水根据其来源可以分为来自厕所的黑水和来自厨房、洗涤、洗澡等的灰水,其中黑水主要包括粪便、尿液和冲厕水等[2]。人粪尿的日均排放量仅占生活污水的1%~2%(体积比),但生活污水中约60% 的化学需氧量(Chemical Oxygen Demand, COD)、97%的总氮(Total Nitrogen, TN)和90%的总磷(Total Phosphorus, TP)源自于黑水[3]。因此,源分离是一种能充分利用黑水中营养物质并大幅降低污水处理成本的有效方案[4]。通过“黑灰分离”,对黑水进行处理,获得液态或固态肥,实现黑水资源化利用。化粪池是农村地区常见的无动力黑水简易处理设施[5],通过厌氧消化实现对黑水中有机物的降解,然而,化粪池的简易厌氧消化不能有效去除黑水中所含有的大量病原微生物。王玉华等[6]研究发现在三格式化粪池中,经30 d以上的厌氧消化,粪大肠菌值无法满足无害化卫生要求,增加了利用过程中的安全风险。通过提高发酵温度或与餐厨垃圾、畜禽粪便、厌氧污泥、农业废弃物共消化等方式,可有效灭活病原微生物,同时产生清洁能源甲烷,实现黑水的资源化,但需要额外的设施收集农户黑水和产生的甲烷,增加了建设成本,在广大农村地区推广应用难度较大。因此,强化黑水在化粪池内厌氧发酵,促进大分子有机物的水解和病原微生物的灭活,是进行黑水安全资源化利用的关键[7]。
本研究应用厌氧发酵菌剂,强化黑水厌氧发酵产酸过程,促进黑水中有机物的快速水解并积累有机酸,抑制后续的产甲烷过程,保留黑水中的小分子有机物和营养物质,获得液态肥,同时有效控制黑水中的臭味物质和粪大肠菌群等病原微生物,保障发酵液回田利用的安全性。通过批次实验,考察了厌氧发酵菌剂投加量、发酵温度对黑水中有机物转化、有机酸积累、臭味控制和病原微生物灭活的影响,分析了发酵体系中微生物群落结构的变化,提出了适宜的黑水强化处理方法,为实现农村黑水资源化安全利用提供依据。
厌氧发酵菌剂对黑水厌氧发酵和无害化效果的影响
Influence of anaerobic fermentation bacterial agents on the effectiveness of anaerobic fermentation and harmlessness of blackwater
-
摘要: 为实现农村黑水的安全资源化利用,本研究通过添加厌氧发酵菌剂,分别考察了菌剂投加量、发酵温度对黑水中有机物的转化和病原微生物灭活效果的影响,分析了发酵体系中微生物群落结构的变化。结果表明厌氧发酵菌剂对黑水厌氧发酵有明显促进作用,适宜投加量为黑水量的1‰。较高温度有利于黑水发酵,SCOD积累量最高达
1497 mg·L−1,VFA积累量为359 mg·L−1,80.3%的纤维素被降解,粪大肠菌群数、蛔虫卵数均达到无害化要求。低温时微生物活性降低但仍有明显促进效果。发酵体系中,厚壁菌门、拟杆菌门和变形菌门是主要优势菌门,相对丰度分别为35.8%~63.0%、9.9%~43.8%和2.6%~31.5%;优势菌属为Acinetobacter, Tissierella, Bacteroides菌属,相对丰度分别为14.0%~22.5%、6.4%~14.5%和1.3%~7.9%。厌氧发酵菌剂的投加提高了具有水解酸化功能的厚壁菌门的丰度,降低了变形菌门的丰度;同时提高了具有降解木质素、纤维素的Dysgonomonas丰度,降低了Acinetobacter, Ruminococcus和 Romboutsia的丰度。本研究结果可为应用厌氧发酵菌剂促进黑水厌氧发酵、臭味控制、实现黑水的高效无害化和资源化提供依据。Abstract: In order to safely and resourceful utilization of rural blackwater, the anaerobic fermentation bacterial agents were added in the blackwater, the effects of bacterial dosage and fermentation temperature on the conversion of organic matter and the inactivation effect of pathogenic microorganisms in black water were investigated, and the changes in the microbial community structure of the fermentation system were analysed, respectively. The results showed that anaerobic fermentation bacterial agents significantly promoted the anaerobic fermentation of black water, and the optimal dosage was 1‰ of black water. The high temperature was conducive to the fermentation process, the highest SCOD and VFA accumulation were1497 mg·L−1 and 359 mg·L−1, respectively; 80.3% of cellulose was degraded, and the counts of Fecal coliform and Ascaris lumbricoides egg met the requirements of harmlessness. At lower temperatures, the microbial activity decreased, but still exhibited a considerable promotional effect. In the fermentation system, Firmicutes, Bacteroidota and Proteobacteria were the main dominant phyla, with relative abundances of 35.8%~63.0%, 9.9%~43.8%, and 2.6%~31.5%, respectively; and the dominant genera were Acinetobacter, Tissierella, and Bacteroides, with relative abundances of 14.0%~22.5%, 6.4%~14.5%, and 1.3%~7.9%, respectively. 22.5%, 6.4%~14.5% and 1.3%~7.9%, respectively. The addition of anaerobic fermentation agents increased the abundance of the Firmicutes with hydrolytic acidification function and decreased the abundance of the Bacteroidota. Meanwhile, it increased the abundance of the Dysgonomonas with the function of degrading lignin and cellulose, and decreased the abundance of the Acinetobacter, Ruminococcus, and Romboutsia. This study provides a reference for the application of anaerobic fermentation bacterial agents to promote the anaerobic fermentation of blackwater, control odour production and effectively achieve the harmlessness and resourcefulness of blackwater. -
表 1 厌氧发酵菌剂微生物群落丰度
Table 1. Microbial community abundance of the anaerobic fermentation bacterial agent
门水平分类 相对丰度/% 属水平分类 相对丰度/% 厚壁菌门(Firmicutes) 88.28 乳杆菌属(Lactobacillus) 87.40 变形菌门(Proteobacteria) 11.21 罗尔斯通菌属(Ralstonia) 6.55 拟杆菌门(Bacteroidota) 0.25 假单胞菌属(Pseudomonas) 2.06 放线菌门(Actinobacteriota) 0.08 寡养单胞菌属(Stenotrophomonas) 1.07 蓝藻菌门(Cyanobacteria) 0.05 李斯特菌属(Listeria) 0.48 脱硫杆菌门(Desulfobacterota) 0.02 根瘤菌属(Allorhizobium-Rhizobium) 0.37 疣微菌门(Verrucomicrobiota) 0.02 气单胞菌属(Aeromonas) 0.19 脱铁杆菌门(Deferribacterota) 0.02 弧菌属(Vibrio) 0.13 奇异球菌门(Deinococcota) 0.02 固氮螺菌属(Azospirillum) 0.12 梭杆菌门(Fusobacteriota) 0.02 普氏菌属(Prevotella_9) 0.08 表 2 不同菌剂投加量下,黑水的粪大肠菌群值
Table 2. Fecal coliform values of blackwater at different dosages of bacterial agents
发酵时间/d F0 F1 F2 F3 F4 F5 0 4.0×10−6 4.0×10−6 4.0×10−6 4.0×10−6 4.0×10−6 4.0×10−6 10 4.0×10−5 0.4 0.6 3.6 4.3 4.3 表 3 不同温度下,黑水的粪大肠菌群的最大可能数
Table 3. Most probable number of Fecal coliform in black water at different temperatures
发酵时间/d T0/(MPN·L−1) T1/(MPN·L−1) T2/(MPN·L−1) T3/(MPN·L−1) 0 9.2×109 9.2×109 9.2×109 9.2×109 1 1.7×1010 9.2×109 1.1×1010 1.3×1010 2 1.9×1010 5.3×109 7.4×109 9.1×109 3 2.1×1010 3.7×106 4.3×106 8.3×108 4 2.3×109 4.7×105 2.9×105 3.5×106 5 1.9×109 7.3×104 1.3×105 7.2×105 6 2.3×1010 5 900 8.3×104 5.5×105 7 2.5×1010 3 700 9 300 1.3×104 8 2.3×1010 2 800 4 900 8 600 9 2.3×1010 3 300 3 100 7 900 10 2.5×1010 3 400 5 400 6 400 表 4 不同温度下,黑水的蛔虫卵的最大可能数
Table 4. Most probable number of Ascaris lumbricoides eggs in black water at different temperatures
MPN·L−1 发酵时间/d T0 T1 T2 T3 0 2.6×103 2.6×103 2.6×103 2.6×103 10 1.2×103 4 11 60 表 5 微生物多样性及丰富度指数统计
Table 5. Microbial diversity and the statistics of abundance index
样本 Reads Richness Simpson Shannon Coverage BW 76 843 624 0.123 4.68 1 D1M0 84 338 649 0.125 4.64 1 D1M1 79 960 1 276 0.021 7 6.91 1 D5M0 85 827 577 0.066 5 4.55 1 D5M1 76 468 1 194 0.032 2 6.7 1 D10M0 71 067 682 0.076 6 4.71 1 D10M1 83 976 1 038 0.039 6 6.59 1 -
[1] DISSANAYAKE P, TENNAKOON M. Guide to on-site wastewater management for industrial and commercial establishments and other institutions: guide for hotel and restaurant owners and managers in Kurunegala, Sri Lanka[J]. Iwmi Books, 2008, 68(3): 20-21. [2] SABHARWAL S, SARMA K S S. Appliance of electron beam technology for disinfection of sewage water to minimize public health risks[J]. European Journal of Sustainable Development, 2013, 2(2): 31-31. doi: 10.14207/ejsd.2013.v2n2p31 [3] WALKER R, BEADSWORTH A. The potential of source-separated human urine to be used as a partial replacement for synthetic fertilisers[J]. Aspects of Applied Biology, 2011: 171-176. [4] 王国田, 郭芳, 温禾, 等. 基于源分离的农村污水资源化技术现状与展望[J]. 资源节约与环保, 2024, 1(02): 41-46. [5] SANTIAGO-DIAZ A L, GARCIA-ALBORTANTE J, SALAZAR-PELAEZ M L. UASB-septic tank as an alternative for decentralized wastewater treatment in Mexico[J]. Environmental Technology, 2019, 40(13): 1780-1792. [6] 王玉华, 方颖, 焦隽. 江苏农村“三格式”化粪池污水处理效果评价[J]. 生态与农村环境学报, 2008, 24(2): 80-83. [7] MAHMOUD A, ZAGHLOUL M, HAMZA R, et al. Comparing VFA composition, biomethane potential, and methane production kinetics of different substrates for anaerobic fermentation and digestion[J]. Fermentation, 2023, 9: 138-138. doi: 10.3390/fermentation9020138 [8] PETER J A C, CHRISTOPHER J F, NAOHISA Goto, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[J]. Nucleic Acids Research, 2009, 38(6): 1767-1771. [9] KASPER D H, STEVEN E B, et al. Biases in Illumina transcriptome sequencing caused by random hexamer priming[J]. Nucleic Acids Research, 2010, 38(12): 131-131. doi: 10.1093/nar/gkq224 [10] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 211-213. [11] WEN L, HUANG X W, LI X Y. Enhanced production of short-chain fatty acids from sludge by thermal hydrolysis and acidogenic fermentation for organic resource recovery[J]. Science of the Total Environment, 2022, 8(28): 154-389. [12] DIAZ-ELSAYED N, REZAEI N, GUO T, et al. Wastewater-based resource recovery technologies across scale: A review[J]. Resources Conservation and Recycling, 2019, 14(5): 94-112. [13] TAYLOR K A C C. A modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances[J]. Applied Biochemistry and Biotechnology, 1995, 53(3): 207-214. doi: 10.1007/BF02783496 [14] 王玉万, 徐文玉. 木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J]. 微生物学通报, 1987, 1(2): 81-84. [15] 卫生部, 国家标准管理委员会. GB7959-2012 粪便无害化卫生标准[S]. 北京: 中国标准出版社, 2012. [16] 生态环境部. HJ347.2-2018 水质 粪大肠菌群的测定 多管发酵法[S]. 北京: 中国环境出版集团, 2019. [17] YAN, Han, NING. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge[J]. Bioresource Technology, 2017, 2(41): 95-102. [18] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057 [19] HARDER R, WIELEMAKER R, LARSEN A T, et al. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(8): 695-743. doi: 10.1080/10643389.2018.1558889 [20] 林星杰, 杨慧芬, 宋存义. UV254在水质监测中应用的研究[J]. 能源与环境, 2006, 1(22): 22-24. [21] 刘莹, 盛飞, 陈文婷, 等. UV254在煤制气废水处理中的指示作用[J]. 环境工程学报, 2015, 9(4): 1809-1814. [22] 王明月, 程丽华, 刘健, 等. 污水处理对黑水/灰水中溶解性有机物紫外光谱及荧光光谱特性的影响[J]. 环境工程学报, 2019, 13(4): 910-917. [23] YAMAMOTO H, LILJESTRAND H M, SHIMIZU Y, et al. Effects of physical -chemical characteristics on the sorption of selected endocrine disrnptors by dissolved organic matter surrogates[J]. Environmental Science & Technology, 2003, 37(12): 2646-2657. [24] 谷洁, 李生秀, 秦清军, 等. 微生物及胡敏酸E4/E6值在农业废弃物静态高温腐解中的变化[J]. 西北农林科技大学学报 (自然科学版), 2005, 33(12): 98-102. [25] 程丽华, 王奇, 韩婷, 等. 混凝对二级出水中有机物分布特性的影响[J]. 环境工程学报, 2013, 7(8): 2919-2924. [26] 安莹, 李云辉, 李震, 等. 改良型 AO 法组合工艺中有机物的三维荧光分析[J]. 环境工程学报, 2013, 7(1): 159-163. [27] DU Y X, LU Y H, ROEBUCK J A, et al. Direct versus indirect effects of human activities on dissolved organic matter in highly impacted lakes[J]. Science of the Total Environment, 2020, 75(2): 141-839. [28] YU H , LIANG H , QU F , et al. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix[J]. Scientific Reports, 2015, 5(1): 2-7. [29] 汤昀, 朱教宁, 庞震鹏, 等. 菌剂预处理秸秆与牛粪混合对厌氧发酵产气的影响[J]. 天津农业科学, 2022, 28(6): 56-60. [30] MA Q, MENG N, LI Y, et al. Occurrence, impacts, and microbial transformation of 3-methylindole (skatole): A critical review[J]. Journal of Hazardous Materials, 2021, 41(6): 126-181. [31] MA Q, QU H, MENG N, et al. Biodegradation of skatole by Burkholderia sp. IDO3 and its successful bioaugmentation in activated sludge systems[J]. Environmental Research, 2020, 18(2): 109-123. [32] MA Q, LIU SW, LI SZ, HU JB, et al. Removal of malodorant skatole by two enriched microbial consortia: performance, dynamic, function prediction and bacteria isolation[J]. Science of the Total Environment, 2020, 72(5): 138-416. [33] MENG X, HE ZF, LI HJ, ZHAO X. Removal of 3-methylindole by lactic acid bacteria in vitro[J]. Experimental and Therapeutic Medicine, 2013, 6(4): 983-988. doi: 10.3892/etm.2013.1251 [34] 农业部. NY/T1168-2006 畜禽粪便无害化处理技术规范[S] . 北京: 中国标准出版社, 2007. [35] HASSAN Z, MILTON H, SAIER J. Gut Bacteroides species in health and disease, Gut Microbes, 2021, 13(1). [36] 宋伟民, 卢纯惠, 李锦梅. 土壤渗滤处理三格化粪池粪液的可行性论证[J]. 上海环境科学, 1997, 16(3): 36-37. [37] 唐山青, 谢彦培, 刘智峰, 等. 温度转换对厌氧消化系统连续运行及微生物群落的影响[J/OL]. 中国环境科学. [38] 韦采妮, 赵晨菊, 黄河笑, 等. 微量元素Fe、Co、Ni对养殖粪污厌氧发酵产气性能及微生物群落结构影响[J]. 当代化工研究, 2022, 20(6): 23-25. [39] FLINT H J, BAYER E A, RINCON M T, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis[J]. Nature reviews Microbiology, 2008, 6(2): 121-131. doi: 10.1038/nrmicro1817 [40] XIAO Z Z, SHI C M, SHI P W, et al. A comparative study of composting the solid fraction of dairy manure with or without bulking material: performance and microbial community dynamics[J]. Bioresource Technology, 2018, 247: 443-452. doi: 10.1016/j.biortech.2017.09.116 [41] CHUA HH, CHOU HC, et al. Intestinal dysbiosis featuring abundance of ruminococcus gnavus associates with allergic diseases in Infants[J]. Gastroenterology, 2018, 154(1): 154-167. doi: 10.1053/j.gastro.2017.09.006 [42] 李晓萍, 张龙, 刘华. 摩根菌致肺内感染合并菌血症1例[J]. 宁夏医科大学学报, 2013, 35(3): 357-358. [43] DUAN J, LIANG J D, WANG Y P, et al. Kraft lignin biodegradation by Dysgonomonas sp. WJDL-Y1, a new anaerobic bacterial strain isolated from sludge of a pulp and paper mill[J]. Journal of Microbiology and Biotechnology, 2016, 26(10): 1765-1773. doi: 10.4014/jmb.1602.02014 [44] ZHANG M L, LIU N, QIAN C L, et al. Phylogenetic and functional analysis of gut Microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes[J]. Microbial Ecology, 2014, 68(2): 416-425. doi: 10.1007/s00248-014-0388-3