-
卡马西平(carbamazepine,CBZ)是一种常见且重要的精神类药物,在临床上常用于控制癫痫的发作、三叉神经痛和舌咽神经痛,并且可以预防和治疗狂躁症和抑郁症,每年消耗量达1 214 t[1-2]。同时,CBZ也是水环境和城镇污水中典型的药物和个人护理用品(pharmaceutical and personal care products,PPCPs)类污染物。与众多PPCPs类污染物类似,CBZ具有难降解特性,其半衰期长达(990±10) d[3]。因此,CBZ随污水排放后,将在环境中持续存在,其在地表水和土壤中的残留质量浓度可高达830 μg·L−1[4-5]和50 μg·kg−1[3]。同时,CBZ还具有较强的生物累积性,在ng·L−1级别就会产生神经毒性、胚胎发育影响、器官损伤等显著的生态毒性效应,其在食物链的富集作用对水生生态系统和人体健康产生深远影响[6]。对于CBZ的处理技术,在传统的污水处理厂中,CBZ的去除率通常低于10%[7-8]。高级氧化技术(advanced oxidation processes,AOPs),包括Fenton氧化、超声氧化、臭氧氧化和紫外线/过硫酸盐氧化等,可原位生成强氧化剂(·OH、1O2、·O2−、O3、HOCl和SO4·−)[9-11],以实现CBZ的快速氧化降解。然而,能量和不稳定试剂的大量投入、二次污染物生成仍是AOPs面临的关键问题。因此,研发高效、低耗的CBZ降解技术,从受污染水体中有效去除CBZ等PPCPs类污染物、缓解其环境生态风险具有重要意义。
有研究表明,光电催化(photoelectrocatalysis,PEC)技术已被证明是应对能源危机和环境污染的一种重要AOPs方法[12]。PEC系统耦合了光催化过程和电化学过程,能有效解决电催化过程能耗高、光催化过程效能低的问题,提高有机污染物的降解效果。例如,WANG等[13]的研究证明,以TiO2为光阳极的PEC系统对CBZ的降解率为(73.1±1.7)%,高于光催化(photocatalysis,PC)和电催化(electrocatalysis,EC)工艺的总和。然而,以CBZ为代表的PPCPs污染物,其在污水中质量浓度为仅为ng·L−1~μg·L−1[14],要实现CBZ的高效降解往往需要投加更多的电能。近年来,光催化燃料电池(photocatalytic fuel cell,PFC)结合了光催化和传统燃料电池的原理,可在无需外加电能情况下,驱动有机污染物的光电催化降解过程,并可同步产生电能[15],其有望为水中PPCPs类污染物的高效、低耗去除提供新的解决方案。
对于PFC系统,研究表明通过改进阳极材料增加光电流是有限的,难以实现系统性能的大幅度提升,加之电子从光阳极迁移到阴极的由于动力学缓慢等原因无法快速消耗。阴极过程已成为整个PFC系统的限制性因素[16]。目前,PFC过程通常采用2种功能性阴极,一是催化氧气4电子还原反应的普通阴极,如ZHANG等[17]构建光催化燃料电池,在模拟太阳光照射下,CN-WO3/W阳极在1.2 V(相对于Ag/AgCl)下,以有机污染物为燃料,显示出6.1 mA·cm−2的稳态光电流密度,且对PFOA的降解率高达95%。二是进行2电子还原反应的H2O2电合成阴极,该阴极可以利用光阳极产生的电子在阴极表面选择性合成H2O2,通过类芬顿过程和光阳极作用,促进体系中ROS的生成和CBZ等水中微量有机污染物的降解[18-19]。然而,值得注意的是,在PFC系统中,阴阳极通过光电流密切相关,阴极的选择直接影响了系统产电和阳极光催化性能。O2/H2O2的标准电极电势为0.695 V vs SHE仅为O2/H2O的50%,因而从热力学角度来看,采用H2O2电合成阴极对于电能回收、光阳极空穴-电子有效分离和空穴有效利用是不利的。
因此,本研究主要以PFC系统高效低耗降解CBZ为目标,研究不同阴极对PFC系统产电、CBZ去除效能的影响,选择效能最优的阴极开展影响因素分析实验、并通过淬灭实验和中间产物分析,探究PFC系统对CBZ的降解机制,为PFC系统低耗高效去除水中的CBZ提供数据参考。
功能性阴极对光催化燃料电池去除卡马西平的影响
Effect of functional cathodes on carbamazepine removal in the photocatalytic fuel cell
-
摘要: 光催化燃料电池(PFC)具有降解污染物和同步电能回收的特点,而阴极的选择直接影响了系统产电和阳极光催化性能。因此该研究以TiO2/g-C3N4/CQDs薄膜电极(TCNC)作为光阳极,比较不同功能性阴极构建的PFC体系对卡马西平(CBZ)的处理效果,在80 mW·cm−2的LED白光照射下,经过300 min处理后,对比石墨阴极(PG)、类芬顿空气扩散阴极(GF)和普通铂阴极(Pt),碳载铂空气扩散阴极(Pt/C)具有更好的效果,对CBZ的去除效率达到75.2%。同时,TCNC - Pt/C体系具有较高的电能回收潜力,最大功率密度达1.5 μW·cm−2,是其他3种阴极的3~5倍。进一步探究了CBZ初始浓度、电解质种类、光照强度、腐殖酸和电流强度对TCNC-Pt/C去除CBZ的影响。根据EPR结果和淬灭实验结果以及对中间产物的分析推测,确定在TCNC - Pt/C系统降解去除CBZ的过程中,起主要作用的是·O2−和·OH,并获得了CBZ的主要降解路径。本研究为PFC系统低耗高效去除水中的CBZ提供数据参考。Abstract: Photocatalytic fuel cell (PFC) has the great potential for simultaneous refractory organic pollutants degradation and energy recovery. The cathode may affect the electricity production and anode photocatalytic performance of this system. In this study, TiO2/g-C3N4/CQDs film electrode (TCNC) was used as the photoanode of the PFC, and the effect of different functional cathodes on the removal of carbamazepine (CBZ) was investigated. Under the power intensity of 80 mW·cm−2 (LED white light), 300 min treatment by PFC with carbon-loaded platinum air diffusing cathode (Pt/C) resulted in higher CBZ removal efficiency of 75.2% than that with graphite cathode (PG), Fenton-like air diffusing cathode (GF) and ordinary platinum cathode (Pt). At the same time, TCNC-Pt/C system had higher energy recovery with the Pmax of 1.5 μW·cm−2, which was 3-5 times of the PFC systems with other three cathodes. Furthermore, the effects of initial CBZ concentration, electrolyte type, power intensity, humic acid and current intensity on the removal of CBZ by the TCNC-Pt/C system were investigated. Based on the EPR results, quenching experiments and intermediate product analysis, it was suggested that ·O2− and ·OH were the dominated reactive species leading to CBZ degradation in the TCNC-Pt/C system, and the probable degradation pathway of CBZ was identified. This study may provide a data reference for the low-consumption and high-effective removal of CBZ by the PFC system.
-
Key words:
- photocatalytic fuel cell /
- CBZ /
- functional cathode /
- energy recovery
-
表 1 GF阴极和Pt/C阴极的比表面积和孔径分析
Table 1. Specific surface area and pore analysis of GF and Pt/C cathodes
阴极 BET面积/(m2·g−1) 孔径/nm 微孔体积/(cm3·g−1) GF阴极 9.897 6 11.730 7 0.053 539 Pt/C阴极 11.763 6 10.791 9 0.069 410 -
[1] CHEN C F, WANG Y Z, DING S H, et al. A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine[J]. Microchemical Journal, 2019, 147: 191-197. doi: 10.1016/j.microc.2019.03.024 [2] CONTARDO-JARA V, LORENZ C, PFLUGMACHER S, et al. Exposure to human pharmaceuticals carbamazepine, ibuprofen and bezafibrate causes molecular effects in dreissena polymorpha[J]. Aquatic Toxicology, 2011, 105(3-4): 428-37. doi: 10.1016/j.aquatox.2011.07.017 [3] DURáN-ÁLVAREZ J C, PRADO B, GONZáLEZ D, et al. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil — Results of laboratory scale experiments[J]. Science of the Total Environment, 2015, 538: 350-362. doi: 10.1016/j.scitotenv.2015.08.028 [4] BUNTING S Y, LAPWORTH D J, CRANE E J, et al. Emerging organic compounds in European groundwater[J]. Environmental Pollution, 2021, 269: 115945. doi: 10.1016/j.envpol.2020.115945 [5] VALDEZ-CARRILLO M, ABRELL L, RAMíREZ-HERNáNDEZ J, et al. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review[J]. Environmental Science and Pollution Research 2020, 27(36): 44863-44891. [6] YANG B, KOOKANA R S, WILLIAMS M, et al. Removal of carbamazepine in aqueous solutions through solar photolysis of free available chlorine[J]. Water Research, 2016, 100: 413-420. doi: 10.1016/j.watres.2016.05.048 [7] LIU Z, ZHAO C, WANG P, et al. Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: Comparison, optimization, recycle, and mechanism study[J]. Chemical Engineering Journal, 2018, 343: 28-36. doi: 10.1016/j.cej.2018.02.114 [8] KUMAR R, SEN S. Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 9: 122-127. [9] KOCSIS G, SZABó-BáRDOS E, FóNAGY O, et al. Characterization of various titanium-dioxide-based catalysts regarding photocatalytic mineralization of carbamazepine also combined with ozonation[J]. Molecules, 2022, 27(22). [10] DA COSTA E P, BOTTREL S E C, STARLING M, et al. Degradation of carbendazim in water via photo-fenton in raceway pond reactor: assessment of acute toxicity and transformation products[J]. Environmental Science Pollution Research, 2019, 26(5): 4324-4336. doi: 10.1007/s11356-018-2130-z [11] XIAO Z J, WANG M, R L J. Degradation of fungicide carbendazim in aqueous solution by sonolytic ozonation[J]. International Conference on Remote Sensing, Environment and Transportation Engineering, 2011, : 8166-8169. [12] CHI Z X, ZHAO J Y, ZHANG Y, et al. The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review[J]. Green Energy & Environment, 2022, 7(3): 372-393. [13] WANG D, HE Y N, ZHONG N, et al. In situ chloride-mediated synthesis of TiO2 thin film photoanode with enhanced photoelectrochemical activity for carbamazepine oxidation coupled with simultaneous cathodic H2 production and CO2 conversion to fuels[J]. Journal of Hazardous Materials, 2021, 410: 124563. doi: 10.1016/j.jhazmat.2020.124563 [14] TRAN N H, REINHARD M, GIN K Y-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review[J]. Water Research, 2018, 133: 182-207. doi: 10.1016/j.watres.2017.12.029 [15] HE Y, CHEN K D, LEUNG M K H, et al. Photocatalytic fuel cell – a review[J]. Chemical Engineering Journal, 2022, 428: 131074. doi: 10.1016/j.cej.2021.131074 [16] XIA L G, CHENG X S, SU Y Q, et al. Engineering ZnIn2S4 nanoflowers on NiCo2S4 cathode for enhanced H2O2 production boosting tetracycline degradation and synchronous power output[J]. Industrial & Engineering Chemistry Research, 2024, 63(7): 3072-3081. [17] ZHANG D, ZHANG W J, ZHANG J J, et al. Flower-like CN layer-doped WO3/W photoanode as an efficient sun-light photoelectrocatalyst for PFOA degradation and electricity generation[J]. Chemical Engineering Journal, 2024, 480: 147910. doi: 10.1016/j.cej.2023.147910 [18] GUO R N, NENGZI L C, CHEN Y, et al. Construction of high-efficient visible photoelectrocatalytic system for carbamazepine degradation: kinetics, degradation pathway and mechanism[J]. Chinese Chemical Letters, 2020, 31(10): 2661-2667. doi: 10.1016/j.cclet.2020.03.068 [19] SUN Y F, SHEN L Y, QIN Q, et al. Enhanced reactive oxygen species via in situ producing H2O2 and synchronous catalytic conversion at stable modified copper foam cathode for efficient high-concentration organic wastewater treatment and simultaneous electricity generation[J]. Chemosphere, 2022, 291: 132911. doi: 10.1016/j.chemosphere.2021.132911 [20] SU Y H, LIU G L, ZENG C P, et al. Carbon quantum dots-decorated TiO2/g-C3N4 film electrode as a photoanode with improved photoelectrocatalytic performance for 1, 4-dioxane degradation[J]. Chemosphere, 2020, 251: 126381. doi: 10.1016/j.chemosphere.2020.126381 [21] CAI G Y, TIAN Y, LI D K, et al. Self-enhanced and efficient removal of As(III) from water using Fe–Cu–Mn composite oxide under visible-light irradiation: Synergistic oxidation and mechanisms[J]. Journal of Hazardous Materials, 2022, 422: 126908. doi: 10.1016/j.jhazmat.2021.126908 [22] PAN C, FU L B, LIDE F N, et al. Insights into bromate reduction by Fe(II): multiple radicals generation and carbamazepine oxidation[J]. Chemical Engineering Journal, 2022, 431: 133957. doi: 10.1016/j.cej.2021.133957 [23] HUANG H W, HAN X, LI X W, et al. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures[J]. Applied Materials & Interfaces, 2015, 7(1): 482-492. [24] ZHUO Q F, LU J C, LU K, et al. Efficient degradation of carbamazepine using a modified nickel-foam cathode (Ni-FM/CNTs) in penetrating electro-Fenton process[J]. Process Safety and Environmental Protection, 2023, 178: 381-391. doi: 10.1016/j.psep.2023.08.026 [25] INOUE G, YOKOYAMA K, OOYAMA J, et al. Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components[J]. Journal of Power Sources, 2016, 327: 610-621. doi: 10.1016/j.jpowsour.2016.07.107 [26] HU Y Z, ZHANG J J, SHEN T, et al. Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores[J]. Applied Materials & Interfaces, 2021, 13(25): 29551-29557. [27] 占兴, 熊巍, 梁国熙. 从废水到新能源: 光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 14. [28] CARDENAS-MORCOSO D, GUALDRóN-REYES A F, FERREIRA VITORETI A B, et al. Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 630-636. doi: 10.1021/acs.jpclett.8b03849 [29] FAJARDO A S, SECA H F, MARTINS R C, et al. Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes[J]. Journal of Electroanalytical Chemistry, 2017, 785: 180-189. doi: 10.1016/j.jelechem.2016.12.033 [30] ZHA L N, BAI J, ZHOU C H, et al. Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO2/WO3 photoanode and Cu nanowires cathode[J]. Chemosphere, 2022, 289: 133119. doi: 10.1016/j.chemosphere.2021.133119 [31] KHALIK W F, ONG S A, HO L N, et al. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell[J]. Environmental Science and Pollution Research, 2016, 23(16): 16716-21. doi: 10.1007/s11356-016-6840-9 [32] ZHOU B W, SONG J L, ZHANG Z R, et al. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2[J]. Green Chemistry, 2016, 19: 1075-1081. [33] KHALIK W F, HO L N, ONG S A, et al. Feasibility of UVA photocatalytic post-treatment of molasses wastewater: effects on melanoidins removal, mineralization and oxidation of ammoniacal-nitrogen[J]. Chemical Engineering and Processing - Process Intensification, 2024, 196: 109681. doi: 10.1016/j.cep.2024.109681 [34] YANG Y, JIANG J, LU X, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process[J]. Environmental Science & Technology, 2015, 49(12): 7330-7339. [35] LI S, WANG Z W, ZHAO X T, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chemical Engineering Journal, 2019, 360: 600-611. doi: 10.1016/j.cej.2018.12.002 [36] AN T C, ZHANG W B, XIAO X M, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161(2): 233-242. [37] LIANG F F, ZHU Y F. Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4 film[J]. Applied Catalysis B: Environmental, 2016, 180: 324-329. doi: 10.1016/j.apcatb.2015.05.009 [38] CAI A H, DENG J, ZHU T X, et al. Enhanced oxidation of carbamazepine by UV-LED/persulfate and UV-LED/H2O2 processes in the presence of trace copper ions[J]. Chemical Engineering Journal, 2021, 404: 127119. doi: 10.1016/j.cej.2020.127119 [39] LI J Y, DODGEN L, YE Q F, et al. Degradation kinetics and metabolites of carbamazepine in soil[J]. Environmental Science & Technology, 2013, 47(8): 3678-3684. [40] LIANG L L, GAO S W, ZHU J C, et al. The enhanced photocatalytic performance toward carbamazepine by nitrogen-doped carbon dots decorated on BiOBr/CeO2: mechanism insight and degradation pathways[J]. Chemical Engineering Journal, 2020, 391: 123599. doi: 10.1016/j.cej.2019.123599 [41] DHANGAR K, KUMAR M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review[J]. Science of the Total Environment, 2020, 738: 140320. doi: 10.1016/j.scitotenv.2020.140320 [42] XIONG J Q, KURADE M B, ABOU-SHANAB R A I, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate[J]. Bioresource Technology, 2016, 205: 183-190. doi: 10.1016/j.biortech.2016.01.038 [43] SUN S P, ZENG X, LI C, et al. Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid[J]. Chemical Engineering Journal, 2014, 244: 44-49. doi: 10.1016/j.cej.2014.01.039 [44] KOMTCHOU S, DIRANY A, DROGUI P, et al. Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process[J]. Environmental Science and Pollution Research, 2015, 22(15): 11513-11525. doi: 10.1007/s11356-015-4345-6