[1] CHEN C F, WANG Y Z, DING S H, et al. A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine[J]. Microchemical Journal, 2019, 147: 191-197. doi: 10.1016/j.microc.2019.03.024
[2] CONTARDO-JARA V, LORENZ C, PFLUGMACHER S, et al. Exposure to human pharmaceuticals carbamazepine, ibuprofen and bezafibrate causes molecular effects in dreissena polymorpha[J]. Aquatic Toxicology, 2011, 105(3-4): 428-37. doi: 10.1016/j.aquatox.2011.07.017
[3] DURáN-ÁLVAREZ J C, PRADO B, GONZáLEZ D, et al. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil — Results of laboratory scale experiments[J]. Science of the Total Environment, 2015, 538: 350-362. doi: 10.1016/j.scitotenv.2015.08.028
[4] BUNTING S Y, LAPWORTH D J, CRANE E J, et al. Emerging organic compounds in European groundwater[J]. Environmental Pollution, 2021, 269: 115945. doi: 10.1016/j.envpol.2020.115945
[5] VALDEZ-CARRILLO M, ABRELL L, RAMíREZ-HERNáNDEZ J, et al. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review[J]. Environmental Science and Pollution Research 2020, 27(36): 44863-44891.
[6] YANG B, KOOKANA R S, WILLIAMS M, et al. Removal of carbamazepine in aqueous solutions through solar photolysis of free available chlorine[J]. Water Research, 2016, 100: 413-420. doi: 10.1016/j.watres.2016.05.048
[7] LIU Z, ZHAO C, WANG P, et al. Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: Comparison, optimization, recycle, and mechanism study[J]. Chemical Engineering Journal, 2018, 343: 28-36. doi: 10.1016/j.cej.2018.02.114
[8] KUMAR R, SEN S. Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 9: 122-127.
[9] KOCSIS G, SZABó-BáRDOS E, FóNAGY O, et al. Characterization of various titanium-dioxide-based catalysts regarding photocatalytic mineralization of carbamazepine also combined with ozonation[J]. Molecules, 2022, 27(22).
[10] DA COSTA E P, BOTTREL S E C, STARLING M, et al. Degradation of carbendazim in water via photo-fenton in raceway pond reactor: assessment of acute toxicity and transformation products[J]. Environmental Science Pollution Research, 2019, 26(5): 4324-4336. doi: 10.1007/s11356-018-2130-z
[11] XIAO Z J, WANG M, R L J. Degradation of fungicide carbendazim in aqueous solution by sonolytic ozonation[J]. International Conference on Remote Sensing, Environment and Transportation Engineering, 2011, : 8166-8169.
[12] CHI Z X, ZHAO J Y, ZHANG Y, et al. The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review[J]. Green Energy & Environment, 2022, 7(3): 372-393.
[13] WANG D, HE Y N, ZHONG N, et al. In situ chloride-mediated synthesis of TiO2 thin film photoanode with enhanced photoelectrochemical activity for carbamazepine oxidation coupled with simultaneous cathodic H2 production and CO2 conversion to fuels[J]. Journal of Hazardous Materials, 2021, 410: 124563. doi: 10.1016/j.jhazmat.2020.124563
[14] TRAN N H, REINHARD M, GIN K Y-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review[J]. Water Research, 2018, 133: 182-207. doi: 10.1016/j.watres.2017.12.029
[15] HE Y, CHEN K D, LEUNG M K H, et al. Photocatalytic fuel cell – a review[J]. Chemical Engineering Journal, 2022, 428: 131074. doi: 10.1016/j.cej.2021.131074
[16] XIA L G, CHENG X S, SU Y Q, et al. Engineering ZnIn2S4 nanoflowers on NiCo2S4 cathode for enhanced H2O2 production boosting tetracycline degradation and synchronous power output[J]. Industrial & Engineering Chemistry Research, 2024, 63(7): 3072-3081.
[17] ZHANG D, ZHANG W J, ZHANG J J, et al. Flower-like CN layer-doped WO3/W photoanode as an efficient sun-light photoelectrocatalyst for PFOA degradation and electricity generation[J]. Chemical Engineering Journal, 2024, 480: 147910. doi: 10.1016/j.cej.2023.147910
[18] GUO R N, NENGZI L C, CHEN Y, et al. Construction of high-efficient visible photoelectrocatalytic system for carbamazepine degradation: kinetics, degradation pathway and mechanism[J]. Chinese Chemical Letters, 2020, 31(10): 2661-2667. doi: 10.1016/j.cclet.2020.03.068
[19] SUN Y F, SHEN L Y, QIN Q, et al. Enhanced reactive oxygen species via in situ producing H2O2 and synchronous catalytic conversion at stable modified copper foam cathode for efficient high-concentration organic wastewater treatment and simultaneous electricity generation[J]. Chemosphere, 2022, 291: 132911. doi: 10.1016/j.chemosphere.2021.132911
[20] SU Y H, LIU G L, ZENG C P, et al. Carbon quantum dots-decorated TiO2/g-C3N4 film electrode as a photoanode with improved photoelectrocatalytic performance for 1, 4-dioxane degradation[J]. Chemosphere, 2020, 251: 126381. doi: 10.1016/j.chemosphere.2020.126381
[21] CAI G Y, TIAN Y, LI D K, et al. Self-enhanced and efficient removal of As(III) from water using Fe–Cu–Mn composite oxide under visible-light irradiation: Synergistic oxidation and mechanisms[J]. Journal of Hazardous Materials, 2022, 422: 126908. doi: 10.1016/j.jhazmat.2021.126908
[22] PAN C, FU L B, LIDE F N, et al. Insights into bromate reduction by Fe(II): multiple radicals generation and carbamazepine oxidation[J]. Chemical Engineering Journal, 2022, 431: 133957. doi: 10.1016/j.cej.2021.133957
[23] HUANG H W, HAN X, LI X W, et al. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures[J]. Applied Materials & Interfaces, 2015, 7(1): 482-492.
[24] ZHUO Q F, LU J C, LU K, et al. Efficient degradation of carbamazepine using a modified nickel-foam cathode (Ni-FM/CNTs) in penetrating electro-Fenton process[J]. Process Safety and Environmental Protection, 2023, 178: 381-391. doi: 10.1016/j.psep.2023.08.026
[25] INOUE G, YOKOYAMA K, OOYAMA J, et al. Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components[J]. Journal of Power Sources, 2016, 327: 610-621. doi: 10.1016/j.jpowsour.2016.07.107
[26] HU Y Z, ZHANG J J, SHEN T, et al. Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores[J]. Applied Materials & Interfaces, 2021, 13(25): 29551-29557.
[27] 占兴, 熊巍, 梁国熙. 从废水到新能源: 光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 14.
[28] CARDENAS-MORCOSO D, GUALDRóN-REYES A F, FERREIRA VITORETI A B, et al. Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 630-636. doi: 10.1021/acs.jpclett.8b03849
[29] FAJARDO A S, SECA H F, MARTINS R C, et al. Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes[J]. Journal of Electroanalytical Chemistry, 2017, 785: 180-189. doi: 10.1016/j.jelechem.2016.12.033
[30] ZHA L N, BAI J, ZHOU C H, et al. Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO2/WO3 photoanode and Cu nanowires cathode[J]. Chemosphere, 2022, 289: 133119. doi: 10.1016/j.chemosphere.2021.133119
[31] KHALIK W F, ONG S A, HO L N, et al. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell[J]. Environmental Science and Pollution Research, 2016, 23(16): 16716-21. doi: 10.1007/s11356-016-6840-9
[32] ZHOU B W, SONG J L, ZHANG Z R, et al. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2[J]. Green Chemistry, 2016, 19: 1075-1081.
[33] KHALIK W F, HO L N, ONG S A, et al. Feasibility of UVA photocatalytic post-treatment of molasses wastewater: effects on melanoidins removal, mineralization and oxidation of ammoniacal-nitrogen[J]. Chemical Engineering and Processing - Process Intensification, 2024, 196: 109681. doi: 10.1016/j.cep.2024.109681
[34] YANG Y, JIANG J, LU X, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process[J]. Environmental Science & Technology, 2015, 49(12): 7330-7339.
[35] LI S, WANG Z W, ZHAO X T, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chemical Engineering Journal, 2019, 360: 600-611. doi: 10.1016/j.cej.2018.12.002
[36] AN T C, ZHANG W B, XIAO X M, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161(2): 233-242.
[37] LIANG F F, ZHU Y F. Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4 film[J]. Applied Catalysis B: Environmental, 2016, 180: 324-329. doi: 10.1016/j.apcatb.2015.05.009
[38] CAI A H, DENG J, ZHU T X, et al. Enhanced oxidation of carbamazepine by UV-LED/persulfate and UV-LED/H2O2 processes in the presence of trace copper ions[J]. Chemical Engineering Journal, 2021, 404: 127119. doi: 10.1016/j.cej.2020.127119
[39] LI J Y, DODGEN L, YE Q F, et al. Degradation kinetics and metabolites of carbamazepine in soil[J]. Environmental Science & Technology, 2013, 47(8): 3678-3684.
[40] LIANG L L, GAO S W, ZHU J C, et al. The enhanced photocatalytic performance toward carbamazepine by nitrogen-doped carbon dots decorated on BiOBr/CeO2: mechanism insight and degradation pathways[J]. Chemical Engineering Journal, 2020, 391: 123599. doi: 10.1016/j.cej.2019.123599
[41] DHANGAR K, KUMAR M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review[J]. Science of the Total Environment, 2020, 738: 140320. doi: 10.1016/j.scitotenv.2020.140320
[42] XIONG J Q, KURADE M B, ABOU-SHANAB R A I, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate[J]. Bioresource Technology, 2016, 205: 183-190. doi: 10.1016/j.biortech.2016.01.038
[43] SUN S P, ZENG X, LI C, et al. Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid[J]. Chemical Engineering Journal, 2014, 244: 44-49. doi: 10.1016/j.cej.2014.01.039
[44] KOMTCHOU S, DIRANY A, DROGUI P, et al. Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process[J]. Environmental Science and Pollution Research, 2015, 22(15): 11513-11525. doi: 10.1007/s11356-015-4345-6