-
炼油行业是我国的支柱产业,据统计,我国每加工1 t原油会产生0.7~3.5 t污水[1]。炼油污水中有机污染物种类多,浓度高,且多为难降解有机物。污水中的溶解性有机物(dissolved organic matters, DOM)的组成及其在水处理过程中的迁移转化一直是水处理研究过程中的重点和难点。DOM成分复杂,其会对体系中金属、胶体等物质在体系中的形成和变化产生影响[2],排入天然水体的DOM会对自然生态产生影响[3]。因此,了解炼化污水中DOM的组成和性质对污水处理和水资源保护有重要的作用[4-5]。
大孔树脂吸附和固相萃取是2种最常用的DOM化学分级分离方法[6]。大孔树脂吸附法一般使用XAD树脂根据DOM的极性和酸碱性将DOM分成不同组分[7-8],但XAD树脂自身有机碳杂质溶出较高,使用前需要进行清洗预处理,操作繁琐耗时长。固相萃取法采用商品化的固相萃取柱对DOM进行分离富集,是近年来快速发展的DOM分离富集方法。与XAD树脂吸附法相比,固相萃取法采用高纯度商品化萃取填料,萃取柱背景溶出低,操作简单,耗时短,同时可供选择的萃取填料种类多,可将DOM分级分离成不同性质的组分。WANG等[9]比较了不同固相萃取填料对城市生活污水处理厂二沉出水中DOM分离的效果,发现不同固相萃取填料对DOM组分选择性不同。单独使用1种SPE材料能分离富集特定性质的DOM组分,但不适于对DOM中不同性质的组分进行全面表征。FANG等[10]将利用Waters Oasis MCX和MAX固相萃取柱串联,将炼油厂污水中DOM分为疏水酸性组分(HOA)、疏水碱性组分(HOB)、疏水中性组分(HON)和亲水物质(HIS)4个组分,该方法所需样品量少,操作简单快捷,可以对DOM中不同性质组分进行全面表征,适合于对DOM组成分离分析。三维荧光光谱(EEM)和傅里叶离子回旋共振质谱(FTICR MS)是DOM组成分析常用的2种高分辨分析方法,三维荧光光谱(EEM)可将水中有机物的进行光谱和组成性质的整体分析,并根据水样特征峰区域将DOM分为不同组分,已经广泛用于水中DOM的组成分析[11];傅里叶离子回旋共振质谱(FT-ICR MS)具有超高质量分辨率和超高质量精确度,可明确DOM的分子式,是分析DOM分子组成的重要手段[12-13],常用于炼油污水中DOM分子组成和转化的表征[14-15]。
本研究利用MCX和MAX固相萃取柱串联的分离提取方法将炼油污水处理厂二沉出水中的DOM分为疏水酸性组分 (hydrophobic acid, HOA) 、疏水碱性组分(hydrophobic base, HOB)、疏水中性组分(hydrophobic neutral, HON)和亲水物质(hydrophilic substance, HIS)4种亚组分,并应用EEM和FT-ICR MS对其进行了组成分析,为炼油污水处理工艺优化和外排水环境影响评估提供科学支撑。
-
水样取自济南某炼油污水处理厂二沉池出水,水样经过0.45 μm混合醋酸纤维素滤膜过滤,过滤后的水样保存于4 ℃冰箱保存。
-
MCX柱和MAX柱使用前分别用10 mL乙腈和10 mL超纯水依次活化。经0.45 μm滤膜过滤后的水样,用1 mol·L−1的NaOH调pH至12,水样过MCX柱并收集流出液备用。用10 mL含 2%甲酸的超纯水淋洗MCX柱,然后用氮气吹干柱子中水分,再用10 mL乙腈洗脱MCX柱,得到HON-1组分;继续用10 mL含5%氨水的乙腈洗脱MCX柱,得到HOB组分;将水样过MCX柱的流出液用用1 mol·L−1的HCl调pH至2,过MAX柱萃取,收集流过MAX柱的水样即为HIS组分,上样后使用10 mL 5%氨水淋洗,用氮气吹干MAX柱子中水分,用10 mL乙腈洗脱MAX柱,得到HON-2组分,继续用10 mL含2%甲酸的乙腈洗脱MAX柱,得到HOA组分。
-
三维荧光光谱由日立F-7000荧光光谱仪测定。测试条件为:PMT电压700 V;扫描速度30 000 nm·min−1;扫描范围:激发波长Ex为200~550 nm,发射波长Em为200~600 nm;扫描间隔为5 nm;狭缝宽带为5 nm;响应时间为0.002 s。测试时以超纯水为空白,样品经0.45 μm滤膜过滤后上机测试。
-
采用Apex-Ultra 9.4T FT-ICR MS(Bruker,德国)对DOM分子组成进行分析,电离源为Apollo ESI负离子,实验样品用乙腈配制成100 mg·L−1的溶液,进样速度为250 μL·h−1。
电离源条件为:毛细管发射电压3 000 V,引入电压3 500 V;毛细管出口电压-320 V。离子在源六级杆中的存储时间为1 ms,碰撞累计时间0.02 s,飞行时间为1 ms。质量采集范围为100~700 Da,平均扫描64次,采样点数4 M,仪器校准和数据处理参考以往研究[16]。
-
使用日本岛津TOC-L对TOC进行测定,以高纯氧做载气,采用680 ℃催化氧化法将有机物氧化成二氧化碳,再由非色散红外检测器对产生的二氧化碳进行定量。
-
水样经0.45 μm滤膜过滤后使用紫外可见分光光度计(岛津UVmini-1280)在254 nm波长下测试,测试时以超纯水为空白,于10 mm石英比色皿中进行测定。
-
遗传毒性测试采用SOS/umu改进方法[17],受试菌株为鼠伤寒沙门氏菌Salmonella typhimurium TA 1535/pSK1002。
-
对炼油污水处理厂二沉出水进行常规水质指标和溶解性有机物特征指标以及遗传毒性指标分析,各水质指标结果为:pH为7.46,SS为28 mg·L−1,COD为91.80 mg·L−1,TOC为28.21 mg·L−1,TN为48.49 mg·L−1,UV254为0.438 6 AU·cm−1,SUVA254为1.520 8 L ·(mg·m)−1,TEQ4-NQO为146.95 μg·L−1。
由水质指标测试分析结果可知,二沉池出水中仍存在较多的溶解性有机物,COD和TOC指标较高,UV254和SUVA254指标分别为0.438 6 AU·cm−1和1.520 8 L ·(mg·m)−1,说明水中可能存在较多的含芳香环的难降解有机物。遗传毒性指标4-NQO当量浓度达到146.95 μg·L−1,出水中的溶解性有机物具有较高的遗传毒性。
-
4种组分在DOM中的TOC分布见表1。炼油污水二沉出水的TOC为28.21 mg·L−1,DOM由67.4%的疏水组分组成(基于TOC值),其中HOA、HOB和HON分别占17.8%、16.95%和32.65%,亲水分HIS为17.23%,剩余未测出的DOM可能残余吸附在萃取柱中。该结果与FANG等[10]应用此分离方法得到的的焦化废水二沉出水4组分分布的研究相似。
-
炼油污水处理厂二沉池出水及其四组分的三维荧光光谱结果见图1。以往的研究一般将三维荧光谱图划分为五个特征荧光峰区域,其中Ⅰ区(Ex/Em=200~250 nm/280~330 nm)为酪氨酸类似物,发光物质与低激发类酪氨酸有关;Ⅱ区(Ex/Em=200~250 nm/330~380 nm)为色氨酸类似物区,发光物质与低激发类色氨酸有关;Ⅲ区(Ex/Em=200~250 nm/380~550nm)的发光物质与富里酸、类富里酸、类胡敏酸、疏水性酸有关,简称富里酸类物质;Ⅳ区(Ex/Em=200~450 nm/200~380nm)为可溶性微生物副产物区,发光物质与类蛋白物质、和微生物代谢产物相关的酪氨酸、高激发类酪氨酸、高激发类色氨酸、含苯环蛋白类物质有关;Ⅴ区(Ex/Em=250~450 nm/380~550nm)的发光物质与胡敏酸、类胡敏酸、海洋类富里酸和疏水性酸有关[18-20]。由二沉出水的三维荧光分区积分结果可知,二沉出水中Ⅰ区荧光区域积分体积占1.21%,Ⅱ区占4.31%,Ⅲ区占4.22%,Ⅳ区占31.81%,Ⅴ区占55.45%, V区腐殖酸类物质和IV区微生物代谢物在二沉出水DOM中所占比例超过50%。由各组分的三位荧光光谱图1可知,HOA组分主要是Ⅴ区的腐殖酸类物质,占比达到49.69%,另外Ⅲ区和Ⅳ区占比也较高,占比分别为22%和17.02%。HOB组分主要是Ⅳ和Ⅴ区的微生物代谢蛋白物质和腐殖酸类物质,占比分别为32.84%和37.26%,Ⅰ区占3.07%,Ⅱ区占10.08%,Ⅲ区占16.75%。HON组分主要是Ⅴ区的腐殖酸类物质,区域积分体积占比达到35.02%,Ⅱ区占16.96%,Ⅲ区占20.49%,Ⅳ区占22.66%,与二沉出水中各组分占比最为相似。HIS组分主要是V区腐殖酸类物质和Ⅲ区富里酸类物质,占比分别为46.78%和35.71%,而二沉出水中Ⅲ区富里酸类物质仅占4.22%。
采用吸光度比特征峰法分析方法对二沉出水中DOM的三维荧光光谱进行分析,光谱图显示水样共有5个物质特征峰,其中A(Ex/Em=270 nm/300 nm)、B(Ex/Em=220 nm/300 nm)附近是酚类物质的特征峰;C(Ex/Em=230 nm/345 nm)、D(Ex/Em=250 nm/425 nm)、E(Ex/Em=280 nm/345 nm)附近为石油类的特征峰[21-22],其中E峰为一环和二环芳烃化合物的特征峰,C为三环芳烃化合物的特征峰,D为三环和四环芳烃化合物的特征峰。二沉出水中主要含有酚类物质、多环芳烃化合物;HOA组分中主要是石油类物质,其中三环和四环芳烃化合物占主导;HOB组分中含有酚类物质,此外还含有一、二、三环芳烃化合物;HON组分与HIS组分主要是三环芳烃化合物,HIS谱图较为杂乱,可能含有较多其它类型化合物。
-
HIS组分中有大量的无机盐,不适合用负离子ESI FT ICR MS检测,对炼油污水处理厂二沉出水和HOA、HOB、HON组分进行了负离子ESI FT ICR MS检测分析。图2为DOM样品在负离子ESI FT ICR MS下的原始谱图。可见,二沉出水、HOA和HON组分的响应较好,HOB 组分响应较差。通过数据分析可知,二沉出水、HOA、HOB、HON分别检测到6 585、2 900、533、1 924个DOM分子,HOA组分中含有的分子个数和化合物类型最多,这是因为负离子ESI模式下会选择性地电离酸性化合物和非碱性氮化物,而HOB组分主要是疏水碱性物质,难以被电离。二沉出水、HOA、HON的分子质量主要分布在200~600 Da。HOB组分有2个质量中心,分别在320 Da和470 Da左右。质谱图中m/z 297、311、325处有较高的质谱峰,为DBE为4的O3S1类化合物,可能是污水中烷基苯磺酸表面活性剂[23-24]。
在二沉出水、HOA、HOB和HON中分别鉴别出56、39、9、30种杂原子类型,主要包括CHO、CHON、CHOS和CHONS 4类化合物,杂原子化合物及其相对丰度见图3。二沉出水中的DOM类型主要包括CHO、CHON、CHOS和CHONS类物质,其中CHO类化合物的相对丰度最高,为49.28%,主要集中在O4~O8。其次是CHOS类化合物,主要集中在O3S1~O8S1。CHON类物质以N1O3~N1O8为主,CHONS类物质以N1O4S~N1O8S为主;双键当量DBE(double bond equivalents) = (2C+2 - H+N) / 2代表化合物分子中含有的双键和环数之和,DBE越高,不饱和度越高,二沉出水中主要的CHO类化合物DBE 大多小于6,代表含CHO3S类化合物DBE主要为4,二沉出水中主要化合物的不饱和程度较低。HOA组分与二沉出水组成相似,以CHO类物质为主,相对丰度达到52.84%,主要集中在O4~O7,这是由于负离子ESI电离源选择性电离酸性物质决定的;其次为CHOS类物质,以O3S1为主,CHON类物质以N4、N4O1~N4O4为主。负离子ESI模式下HOB组分响应较差,检测出来的物质较少,但HOB组分仍以CHOS类物质为主,主要是O3S1。HON中以CHOS类物质为主,主要集中在O3S1~O6S1,其次是CHON类物质,以N2O10~N2O13、N3O3~N3O4为主,CHO类物质以O2~O6为主,CHONS类物质以N1O4S1~N1O5S1为主。因此,二沉出水中存在的N1O3~N1O8类CHON物质主要存在于HIS亲水组分中。
由于DOM不同类型化合物有特定的H/C和O/C,因此,在Van Krevelen图中特定区域对DOM进行归类分析。以往研究主要将VK图划分为7个区域,分别为:脂质 (O/C=0~0.30,H/C=1.50~2.00) ;蛋白质和氨基糖(O/C=0.30~0.67,H/C=1.50~2.20);碳水化合物(O/C=0.67~1.20,H/C=1.50~2.00);不饱和烃(O/C=0~0.10,H/C= 0.70~1.00);木质素(O/C=0.10~0.67,H/C=0.70~1.50);单宁酸(O/C=0.67~1.20,H/C=0.50~1.50);缩合芳烃(O/C=0~0.67,H/C=0.20~0.70) [25-28]。炼油污水处理厂二沉出水DOM的7类化合物在位置均以序号的形式在Van Krevelen图(图4)中标出。由图4可以看出,二沉出水和HOA组分的化合物分布最为相似,主要为脂质、蛋白质和氨基糖、木质素和缩合芳烃类化合物。HOA、HOB组分O/C较低,说明这2个组分中保留了较多的低氧数化合物,而HON组分有更高的O/C,即碳水化合物,说明HON组分中保留了更多氧化程度较高的化合物。此外与HOB组分相比,HOA和HON组分保留了一些H/C较低,缩合度较高的化合物(缩合芳烃类化合物),HOB组分H/C较高,其中化合物的缩合度相对较低。HOA组分含有较多的不饱和烃和缩合芳烃;HOB组分以脂质,蛋白质和氨基糖和木质素为主,缩合芳烃含量较少;HON组分保留了一些H/C较低的缩合芳烃类化合物。
-
1)使用MAX/MCX萃取柱将炼油污水处理厂二沉出水分为HOA、HOB、HON和HIS 4种组分,HON组分的TOC最高,为32.65%,二沉出水中的DOM主要为疏水中性化合物。
2)二沉出水中主要为V区腐殖酸类物质和IV区微生物代谢蛋白物质,HON组分与二沉出水组成最为相似。二沉出水中主要含有酚类物质和多环芳烃化合物;HOA组分主要以三环和四环芳烃化合物占主导;HOB组分含有酚类物质,此外,还含有一环、二环、三环芳烃化合物;HON组分与HIS组分主要是三环芳烃化合物。
3) HOA组分组成与二沉出水最为接近,主要为脂质、蛋白质和氨基糖、木质素和缩合芳烃类化合物,主要化合物类型为CHO,以O4~O7为主,CHOS次之,以O3S1为主,HOA组分含有较多的不饱和烃和缩合芳烃,有较多低氧数化合物;HOB组分主要是CHOS类物质,以脂质,蛋白质和氨基糖和木质素为主;HOB组分中缩合芳烃含量较少且H/C较高; HON中主要的化合物类型为CHOS和CHON,保留了一些H/C较低的缩合芳烃类化合物,且具有更多的高O/C的化合物。
炼油污水处理厂二沉出水中溶解性有机物组分分析
Characterization of four fractions of dissolved organic matters in secondary effluent of refinery wastewater treatment plant
-
摘要: 使用MCX/MAX萃取柱对炼油污水处理厂二沉池出水中的溶解性有机物(DOM)进行分离,获得疏水酸性组分(HOA)、疏水碱性组分(HOB)、疏水中性组分(HON)和亲水物质(HIS)4种亚组分。使用三维荧光光谱和电喷雾-傅里叶变换离子回旋共振质谱对各组分进行了组成表征,结果表明:二沉出水中存在酚类物质和石油类物质的特征荧光峰;HOA组分中化合物类型较多,主要为CHOS类物质;HOB组分中检测到的物质较少,主要为O3S1物质;HON组分中有较多的CHOS、CHON和CHO类物质。以上研究结果可为炼油污水处理工艺优化和外排水环境影响评估提供参考。Abstract: The dissolved organic matter (DOM) in the effluent from the secondary effluent of a refinery wastewater treatment plant was separated by MCX/MAX extraction column, and four sub-components including hydrophobic acidic component (HOA), hydrophobic alkaline component (HOB), hydrophobic neutral component (HON) and hydrophilic substance (HIS) were obtained. 3D-EEM and ESI FT-ICR MS were used to analyze each component. The results showed that specific fluorescence peaks of phenolic substances and petroleum substances existed in the refined wastewater, there were more compounds in HOA component, which mainly was CHOS substances; less substances were detected in HOB component, which mainly was O3S1 substances, and more CHOS, CHON and CHO substances were observed in HON component. This study makes an in-depth analysis of DOM in the effluent of refined wastewater, providing a reference for treatment process optimization and environmental impact assessment of external drainage of refinery wastewater.
-
Key words:
- refinery wastewater /
- secondary effluent /
- 3D-EEM /
- molecular composition
-
目前,国内外开发页岩气主要采用水力压裂的方法。水力压裂法主要是将压裂液(即水和化学试剂组成的混合液)和固体颗粒支撑剂在高压条件下泵入地层深处的岩石,压裂页岩层,形成缝隙,使页岩气更流畅地从岩石裂缝中释放[1]。压裂完成后,压裂液与页岩中的水混合作为返排液返回地面。非常规页岩气快速发展产生了许多环境问题,压裂过程中耗水量大和压裂液中添加的化学物质可能导致地下水和地表水污染[2]。页岩气压裂返排液具有成分复杂[3]、较高的化学需氧量(COD)[4]、处理难度大[5-6]的特点,因而是目前最具有挑战性的工业污水之一[2, 7]。因此,有必要找到具有成本效益的处理方案,以实现这种快速增长的非常规能源的可持续发展。
“深井回注技术”是前几年页岩气压裂返排液较普遍的处理方式,由于基础设施限制并且只有在地下深层地层具有足够的孔隙度能接收压裂返排液的地方才能使用深井回注技术,因此,许多井场由于地理位置的限制无法进行深井回注[8-9]。同时,深井回注有诱导地震发生的潜在风险[10],故其可行性越来越低。目前,为了减轻水资源的压力并节约成本,业界更趋向于将返排液重复用于压裂或处理达标后直接外排[11-12]。
混凝沉降是油气行业普遍采用的污水处理工艺,适用于大体积压裂返排液处理[13],可用于页岩气压裂返排液的预处理阶段[14-15]。混凝-吸附联用的实质属于强化混凝技术范畴[16],主要是利用吸附剂大的比表面积、微孔结构和表面反应性来吸附难以被混凝去除的溶解性有机物质[17],同时密度大的吸附剂可作为絮体的凝结核,可加快絮体沉降速度而且能减少混凝产生的污泥量[18],将两者优势互补,可提高废水有机污染物的去除率[19-20]。
本研究对四川省长宁地区页岩气压裂返排液进行预处理,旨在研究混凝-吸附联用作为页岩气压裂返排液中有机污染物去除的预处理工艺的可行性,为后续研究提供参考。
1. 材料与方法
1.1 实验材料、药剂和仪器
实验以四川省宜宾市长宁县某页岩气井场压裂返排液为研究对象,所取水样呈黄褐色,浑浊,黏度较低,有异味,含有悬浮物和杂质。对压裂返排液的基本性能进行测试,测试方法参见文献中的方法[21],测试结果如下:溶液pH为7~8,水温50~60 ℃,浊度22.8 NTU,化学需氧量(COD)为580 mg·L−1,氯离子浓度24 389 mg·L−1,总悬浮物浓度74.13 mg·L−1,溶液Zeta电位为−17.35 mV。
表 1 主要有机污染物种类分析Table 1. Analysis of main organic pollutants处理方法 GC-MS检出物质/种 GC-MS检出主要有机污染物 实验原水 43 2,3,6-三甲基辛烷;正己烷;甲基环己烷;间二甲基环己烷;2-甲基辛烷;异丙基环己烷;3-二甲基壬烷;2-环己基丁烷;3-甲基癸烷;正十一烷;2,3-二甲基癸烷;3-甲基十一烷;1,1-二甲氧基壬烷;2,10-二甲基十一烷;2,6-二甲基十一烷;2,5-二甲基十一烷;2-甲基十二烷;7-亚甲基十三烷;4-甲基十四烷;十五烷;十六烷;2,6,10-三甲基十五烷;十七烷;10-甲基十九烷;2-甲基二十烷;二十烷;1-戊基-2-丙基环戊烷;二乙基环戊烷;反式十氢化萘;硝基氯仿;2-溴壬烷;1,11-二溴十一烷;1-碘十一烷;2-己基-1-癸醇;环庚烷甲醇;2-丁基-1-辛醇;1-癸醇;2-己基-1-辛醇;癸基十四醇;2-甲基癸醇;3,7,11-三甲基-1-十二烷醇;邻苯二甲酸二丁酯;戊基环戊环烯酮 仅投加硅藻土J 36 2,3,6-三甲基辛烷;正己烷;甲基环己烷;间二甲基环己烷;2-甲基辛烷;异丙基环己烷;3-二甲基壬烷;2-环己基丁烷;3-甲基癸烷;正十一烷;2,3-二甲基癸烷;3-甲基十一烷;1,1-二甲氧基壬烷;2,10-二甲基十一烷;2,6-二甲基十一烷;2,5-二甲基十一烷;2-甲基十二烷;7-亚甲基十三烷;4-甲基十四烷;十五烷;十六烷;2,6,10-三甲基十五烷;十七烷;2-甲基二十烷;二十烷;反式十氢化萘;2-己基-1-癸醇;环庚烷甲醇;2-丁基-1-辛醇;1-癸醇;2-己基-1-辛醇;癸基十四醇;2-甲基癸醇;3,7,11-三甲基-1-十二烷醇;邻苯二甲酸二丁酯;戊基环戊环烯酮 先投加硅藻土J再投加PAC 21 2,3,6-三甲基辛烷;甲基环己烷;间二甲基环己烷;2-甲基辛烷;异丙基环己烷;3-二甲基壬烷;2-环己基丁烷;3-甲基癸烷;3-甲基十一烷;2,10-二甲基十一烷;2,6-二甲基十一烷;2,5-二甲基十一烷;2-甲基十二烷;7-亚甲基十三烷;4-甲基十四烷;2,6,10-三甲基十五烷;2-甲基二十烷;反式十氢化萘;2-甲基癸醇;3,7,11-三甲基-1-十二烷醇;戊基环戊环烯酮 药剂:硅藻土J购于吉林省嘉鹏硅藻土研发有限责任公司;聚合氯化铝(PAC)购于巩义市新一代净水材料厂;COD测定试剂购于哈希公司。
仪器:MY3000-6F六联搅拌仪(武汉市梅宇仪器有限公司);DRB200数字消解器(哈希公司);ET76020浊度测定仪(罗威邦公司);PALS 190 Plus Zeta电位分析仪(美国布鲁克海文公司);7890A-5925C气质联用仪(美国安捷伦科技有限公司)。
1.2 实验方法
1) 混凝-吸附联用实验。实验在室温下(25 ℃)进行,取页岩气压裂返排液样品500 mL,使用六联搅拌仪进行搅拌。投加PAC后,以300 r·min−1快搅1 min,再以50 r·min−1慢搅5 min;投加吸附剂后,100 r·min−1慢搅30 min,最后静置沉降30 min。先投加PAC或同时加入PAC和硅藻土J时,300 r·min−1快搅1 min后,100 r·min−1慢搅30 min,最后静置沉降30 min。除了联用顺序实验,所有实验均在PAC之前投加硅藻土J。在沉降结束后,使用移液管在水面下3 cm处取上清液以测定溶液浊度,将处理后样品用0.45 μm醋酸纤维滤膜过滤,测定溶液COD。
2) 处理后挥发性有机污染物分析。固相微萃取对水样进行前处理之后进样,通过7890A-5925C气质联用仪对处理前后水中有机污染物进行表征。气相色谱条件:柱箱温度40 ℃,进样温度250 ℃。载气:氦气,不分流进样。升温程序:40 ℃保持3 min,以5 ℃·min−1的速率升温至150 ℃保持2 min, 以10 ℃·min−1的速率升温至300 ℃保持5 min;总流量为7 mL·min−1,平衡时间为0.5 min。质谱条件:电子轰击(EI)离子源;离子源温度200 ℃,接口温度220 ℃,溶剂延迟时间0.1 min,扫描速度1 000 u·s−1,质荷比m/z为33.00~500.00。
2. 结果与讨论
2.1 混凝-吸附联用可行性研究
由图1可知,随着PAC投加量的增加,COD和浊度去除率先升高后呈下降趋势,ξ电位最初保持为负值逐渐接近0并最终变为正值。当PAC投加量增加到2 000 mg·L−1时,ξ电位接近等电点,COD和浊度去除率达到最大,分别为33.0%和63.6%;当投加量>2 000 mg·L−1时,COD和浊度去除率下降但变化不大,ξ电位值继续增大,由负值变为正值。
水样ξ电位为−17.35 mV,投加PAC后,ξ电位迅速上升。随着PAC投加量的逐渐增加,其水解产生带正电荷的水和羟基离子逐渐增多,阳离子进入胶体压缩扩散层,ξ电位逐渐趋近于0并靠近等电点,胶体脱稳开始集聚,形成絮体并沉降[22],混凝效果达到最佳。当PAC用量继续增加,污染物处理效果变化不大且呈下降趋势,这可能归因于混凝剂的过量添加造成多羟基金属络合离子电荷剩余,ξ电位变成正值并逐渐增大,它们之间的排斥力使体系重新稳定,凝聚效果下降。因此,可选择PAC投加量2 000 mg·L−1进行后续混凝-吸附联用实验。结果表明,仅投加硅藻土J进行吸附时,COD去除率随着投加量的升高而升高,达到8 mg·L−1时,COD去除率最大为24.9%,再增加投加量,去除率几乎不再变化。
与单独投加硅藻土J相比,PAC的投加有利于COD去除效果的提升(图2)。随着2种处理剂投加量的增加,COD去除率逐渐升高。在PAC投加量为2 000 mg·L−1和硅藻土J剂量为8 mg·L−1时,COD去除率可以达到57%,比只投加PAC或硅藻土J时去除率分别提升了24%和27%。可以看出,投加硅藻土J可以达到强化混凝的目的,混凝-吸附联用是一种有效可行的处理方法。
2.2 混凝-吸附联用顺序的确定
从图3可以看出,混凝剂和吸附剂的投加顺序对污染物的去除效果影响很大。先投加硅藻土J或2种处理剂同时投加的处理效果较先投加PAC效果好,先投加吸附剂时处理效果最佳,达到了溶液的最大污染物去除率,COD的去除率达到57%,浊度降低87%。先投加硅藻土J或2种处理剂同时投加时,ξ电位分别为−5.62 mV和−7.45 mV,更接近等电点,絮体形成迅速且致密;而在PAC之后加入硅藻土,ξ电位为−20.33 mV,远离等电点,絮体松散,残留浊度高。
已有研究表明:硅藻土表面在pH 2~12时带负电荷[23],先向水样中投加硅藻土J,能将小分子有机物和呈电中性的有机物吸附[24];继而投加混凝剂,混凝对胶体态物质和大分子有机物有良好的去除[25-26];此外,硅藻土可以嵌入絮体中作为絮体凝结核,改善絮状物的结构并增加絮体密度,使沉降速度加快。先投加PAC后再加入硅藻土J时,大多数硅藻土颗粒可能仅吸附在絮体的表面,使絮体ξ电位降低,水中胶体物质重新稳定,其余的硅藻土颗粒分散在溶液中会导致样本浊度升高,故采用先投加硅藻土J进行混凝-吸附联用实验。
2.3 混凝-吸附时间的确定
吸附剂对吸附质的吸附过程需要一定的反应时间才能取得较好的效果。因此,采用先投加硅藻土J后投加PAC的方式,考察其中吸附段反应时间对污染物去除效果的影响,如图4所示。由图4可知,30 min前,随着吸附时间的延长,污染物去除效果变好;30 min后,吸附过程逐渐达到平衡,去除效果不再随时间的变化而有明显改变。当吸附时间为30 min时,COD和浊度去除率分别达到57%和87%。
刚投加吸附剂时,水相中的污染物浓度与吸附剂表面浓度差较大,吸附剂表面的孔道和基团化学活性较高,污染物会迅速转移到吸附剂表面的吸附位点上[27];随着时间的推移,水相中竞争能力较强的污染物在吸附剂上已逐渐达到饱和,吸附速度变缓。为了使混凝和吸附时间具有更好的匹配性,并考虑综合处理成本,确定先投加硅藻土J吸附30 min后再投加PAC。
2.4 处理前后挥发性有机物分析
页岩气压裂返排液中含有压裂时用于钻井的残留化学添加剂,含量不高但是成分复杂[5]。图5显示了页岩气压裂返排液处理前后的总离子丰度,原水水样中检测到43种有机污染物。表1列出了检出的6类主要有机污染物。
在原水中检测到的有机污染物中包括烷烃类28种、芳香烃类1种、卤代烃类4种、醇类8种、酯类1种和酮类1种。投加硅藻土J后,有机污染物减少7种,卤代烃类得到良好的去除;进一步投加PAC后,有机物种类较原水水样减少了22种,可以将C20以下的饱和直链烷烃和邻苯二甲酸二丁酯完全去除,醇类物质可部分消除。
综合上述分析,混凝-吸附联用能够有效去除多种有机物,可为后续浓缩分离除盐段出水和不凝气COD达标提供保障。因此,混凝-吸附联用可以作为一种有效的页岩气压裂返排液预处理方法。
3. 结论
1)混凝剂PAC和硅藻土J联用具有去除页岩气压裂返排液中COD和浊度的能力。与仅投加PAC相比,硅藻土J的添加能有效加强吸附架桥作用,产生高密度、高强度的可沉降絮体。在PAC投加量为2 000 mg·L−1和硅藻土J剂量为8 mg·L−1时,有更好的污染物去除率和沉降效果。
2)联用顺序和硅藻土J作用时间可影响污染物的处理效果。在PAC之前或同时添加硅藻土可以大幅提高COD和浊度的去除率,吸附剂硅藻土J在PAC前30 min投加时处理效果最佳,COD的去除率达到57%,浊度降低87%。
3)混凝-吸附联用能去除多种有机污染物,有效降低页岩气压裂返排液有机负荷。硅藻土J-PAC联用,可处理去除页岩气压裂返排液种污染物22种,去除了大部分烷烃类、醇类、卤代烃和邻苯二甲酸二丁酯。
4) PAC和硅藻土J作为混凝剂和吸附剂进行混凝-吸附联用处理液页岩气压裂返排液,比传统的混凝/吸附处理工艺更有效、可行,能更好地降低有机负荷,并可为降低后续处理难度和成本提供参考。
-
表 1 二沉出水中4种DOM组分占比
Table 1. The proportion of four components of DOM in the secondary effluent
组分 TOC/(mg·L−1) 组分占比/% HOA 5.02 17.8 HOB 4.78 16.95 HON 9.21 32.65 HIS 4.86 17.23 -
[1] 张帆. 炼化行业废水处理浅析[J]. 化工管理, 2020, 20: 44-45. doi: 10.3969/j.issn.1008-4800.2020.05.029 [2] 于婷. 炼厂二沉出水DOM特性及光催化降解规律研究[D]. 成都: 西南石油大学, 2014. [3] PENG Y K, LI J, LU J L, et al. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent[J]. Journal of Environmental Sciences, 2018, 66: 113-124. doi: 10.1016/j.jes.2017.05.015 [4] ZHANG B L, SHAN C, HAO Z N, et al. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: molecular composition correlated with spectral indexes and acute toxicity[J]. Water Research, 2019, 157: 472-482. doi: 10.1016/j.watres.2019.04.002 [5] KOU Y, JIANG J T, YANG B Y, et al. Transformation of dissolved organic matter at a full-scale petrochemical wastewater treatment plant[J]. Journal of Environmental Management, 2023, 329: 117021. doi: 10.1016/j.jenvman.2022.117021 [6] DITTMAR T, KOCH B, HERTKORN N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography:Methods, 2008, 6(6): 230-235. doi: 10.4319/lom.2008.6.230 [7] 王立英, 吴丰昌, 张润宇. 应用XAD系列树脂分离和富集天然水体中溶解性有机质的研究进展[J]. 地球与环境, 2006, 34(1): 90-96. doi: 10.3969/j.issn.1672-9250.2006.01.015 [8] SHI Q, PAN N, LONG H Y, et al. Characterization of middle-temperature gasification coal tar. Part 3: molecular composition of acidic compounds[J]. Energy & Fuels, 2013, 27(1): 108-117. [9] WANG X, JI Y Y, SHI Q, et al. Characterization of wastewater effluent organic matter with different solid phase extraction sorbents[J]. Chemosphere, 2020, 257: 127235. doi: 10.1016/j.chemosphere.2020.127235 [10] FANG Z, HE C, LI Y Y, et al. Fractionation and characterization of dissolved organic matter (DOM) in refinery wastewater by revised phase retention and ion-exchange adsorption solid phase extraction followed by ESI FT-ICR MS[J]. Talanta, 2017, 162: 466-473. doi: 10.1016/j.talanta.2016.10.064 [11] 栗则, 张晓飞, 吴百春, 等. 三维荧光光谱技术在石油炼化行业的应用[J]. 分析试验室, 2018, 37(7): 863-868. [12] HEADLEY J V, PERU K M, BARROW M P, et al. Mass spectrometric characterization of naphthenic acids in environmental samples: a review[J]. Mass Spectrometry Reviews, 2009, 28(1): 121-134. [13] QI Y L, FU P Q, VOLMER D A. Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: an overview of recent non-petroleum applications[J]. Mass Spectrometry reviews, 2022, 41(5): 647-661. doi: 10.1002/mas.21634 [14] HE C, CHEN W M, CHEN C M, et al. Molecular transformation of dissolved organic matter in refinery wastewaters: Characterized by FT-ICR MS coupled with electrospray ionization and atmospheric pressure photoionization[J]. Petroleum Science, 2022, 20(1): 590-599. [15] 吴百春, 李玉果, 聂凡, 等. 某炼化污水处理厂水中可溶有机物的转化规律研究[J]. 工业水处理, 2022, 42(1): 133-142. [16] LI Y Y, XU C M, CHUNG K H, et al. Molecular characterization of dissolved organic matter and its subfractions in refinery process water by Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuel, 2015, 29(5): 2923-2930. [17] YAN Y, JIANG W W, LI N, et al. Assessing of genotoxicity of 16 centralized source-waters in China by means of the SOS/umu assay and the micronucleus test: Initial identification of the potential genotoxicants by use of a GC/MS method and the QSAR Toolbox 3.0[J]. Mutation Research, 2014, 763: 36-43. doi: 10.1016/j.mrgentox.2013.11.003 [18] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental science & technology, 2003, 37(24): 5701-5710. [19] CHEN M, PRICE R M, YAMASHITA Y, et al. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics[J]. Applied Geochemistry, 2010, 25(6): 872-880. doi: 10.1016/j.apgeochem.2010.03.005 [20] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3 [21] 吴静, 曹知平, 谢超波, 等. 石化废水的三维荧光光谱特征[J]. 光谱学与光谱分析, 2011, 31(9): 2437-2441. [22] 吴静, 谢超波, 曹知平, 等. 炼油废水的荧光指纹特征[J]. 光谱学与光谱分析, 2012, 32(2): 415-419. doi: 10.3964/j.issn.1000-0593(2012)02-0415-05 [23] GENG C, CAO N, XU W, et al. Molecular Characterization of organics removed by a covalently bound inorganic-organic hybrid coagulant for advanced treatment of municipal sewage[J]. Environment Science & Technology, 2018, 52(21): 12642-12648. [24] BAHRI M, MAHDAVI A, MIRZAEI A, et al. Integrated oxidation process and biological treatment for highly concentrated petrochemical effluents: A review[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 183-196. doi: 10.1016/j.cep.2018.02.002 [25] ANTONY R, GRANNAS A M, WILLOUGHBY A S, et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet[J]. Environment Science & Technology, 2014, 48(11): 6151-6159. [26] HOCKADAY W C, PURCELL J M, MARSHALL A G, et al. Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: A qualitative assessment[J]. Limnology and Oceanography:Methods, 2009, 7(1): 81-95. doi: 10.4319/lom.2009.7.81 [27] LU Y H, LI X P, MESFIOUI R, et al. Use of ESI-FTICR MS to characterization dissolved organic matter in headwater streams draining forest-dominated and pasture-dominated watersheds[J]. Plos One, 2015, 10(12): 145639. [28] FENG L, XU J Z, KANG S C, et al. Chemical composition of microbe-derived dissolved organic matter in cryoconite in Tibetan plateau glaciers: Insights from Fourier transform ion cyclotron resonance mass spectrometry analysis[J]. Environment Science & Technology, 2016, 50(24): 13215-13223. -