-
因废物处理、工业泄漏等原因造成的场地尺度地下水污染具有隐蔽性高、自然衰减周期长、风险性高的特点,对人类健康和环境可持续发展有恶劣影响,因此必须积极主动展开地下水污染场地修复,以求快速有效地扼制污染扩展,改善地下水环境[1-2]。由于地下水污染修复过程相较地表水体更加缓慢、复杂,并受多方面环境条件的约束,因此场地修复技术的选择与方案决策十分重要。在诸多污染场地修复技术中,以空气扰动、气相抽提等技术为代表的原位修复技术因所耗时间与成本较少、针对非水相液体 (non-aqueous phase liquid,NAPL) 污染物修复效果较好而得到了广泛应用,但该类技术目前仍存在能耗高、修复后易反弹、对土壤和地质结构要求高等局限性[3-4]。
地下水循环井 (groundwater circulation well,GCW) 因其特殊的井中井结构,可将曝气、抽提、吹脱等修复技术耦合于井内部,使地下水在循环井周围形成三维环流并进入井内进行原位污染修复,达到高效快速处理地下水中污染物的目的,具有对场地环境扰动小、修复成本低、操作简单、能耗低等优势,在地下水污染场地修复的应用中展示了巨大的潜力[5-7]。
循环井技术早期被称为“井中曝气”技术。1974年,在Raymond博士的原位生物修复实验中首次使用了井中曝气的方法,形成了循环井雏形[8]。随后,德国的IEG公司对原位空气扰动 (air sparging,AS) 技术和抽出处理 (pump and treat,P&T) 技术进行改进,于1980年正式研发出真空气化井 (unterdruck-verdampfer-brunnen,UVBTM) 。该项技术的工作原理是通过风机抽提作用形成井内负压,使空气被吸入井中并与地下水形成气水混合物,该混合物中的污染物在脱附反应器中被吹脱出来,被风机抽至地表进行处理。该技术取代了将地下水抽提至地表进行处理这一过程,在欧洲得到了应用和推广[9]。1992年,斯坦福大学研究团队将GCW与气相抽提技术结合,用来处理地下水中的挥发性有机物 (volatile organic compounds,VOCs) ;美国能源部在此基础上成功实验了第一个气流提升井中处理系统 (No VOCsTM) ,使GCW在结构和功能上有了较大改进,并首次将循环井结构应用于地下水有机污染的修复[5]。同时期,美国Wasatch Environmental Inc.简化了No VOCsTM,开发出结构相对简单的密度驱动流系统 (density driven convection well,DDC) ,这是一种利用微生物对VOCs和SVOCs进行降解的循环井技术,省去了地表的气体处理装置[10]。总体来看,循环井修复技术于20世纪90年代在国外已被广泛应用于地下水污染场地修复中,并伴随着循环井结构和功能的不断优化和改进[6]。当前,针对GCW的研究主要是基于物理实验 (砂箱) 和数学模拟两类方法展开,同时国外已有大量成功的工程应用实例。但国内GCW技术的应用研究起步较晚[10,11],2018年博天环境集团将GCW引入中国市场并在山西省落地实施,在短期内表现出良好的持续修复效果,实现GCW在国内的首次应用[12-13];目前,成熟的循环井工程案例还比较缺乏,技术集成创新能力和装备国产化水平仍需提高。
本文结合国内外关于循环井工作原理及结构优化改进,系统总结了GCW及其联合修复技术在砂箱实验和数学模拟两类研究方法上的国内外研究进展,对GCW研究中所涉及的溶质迁移规律、修复效果、影响机理进行归纳总结,为GCW技术在我国推广实行提供参考并给予展望。
基于砂箱实验及数学模拟的地下水循环井修复研究进展
Advances in studies about the groundwater pollution remediation through the groundwater circulation well using sandbox experiments and simulation methods
-
摘要: 针对当前严峻的地下水污染问题,地下水循环井 (groundwater circulation well,GCW) 作为一种地下水原位修复技术,可在井周形成局部水力环流并将污染物捕获至井内进行处理,弥补了异位修复技术环境扰动大、成本较高等缺陷,可针对非水相有机污染物实现较好的修复效果。该技术可与多项修复技术相结合,例如曝气、吹脱、表面活性剂、生物修复、电化学修复和化学氧化修复等,以达到强化修复地下水污染的目的。相关研究以砂箱实验和数学模拟两类研究方法为主,基于这两类方法,详细介绍了地下水循环井技术的发展过程与研究进展,重点梳理了GCW与其它修复技术联合作用下的修复机理,总结了不同环境及工况条件对修复效果的影响。针对我国GCW技术研究现状,今后可考虑与原位热修复技术结合,进一步拓宽理论研究的范围,并积极开展中试试验,以期为该技术在污染场地的实际应用提供参考。Abstract: In terms of the current serious situation of groundwater pollution, the groundwater circulation well (GCW) is a powerful in-situ remediation method, which can trigger a local hydraulic circulation around the well and capture contaminants into the well for subsequent treatments. The GCW covers the shortages of ex-situ remediation technologies such as large environmental disturbances and high costs, and can obtain better remediation performances for non-aqueous organic pollutants. Other remediation techniques like the aeration, blow-off, surfactant, bioremediation, electrochemical remediation, and chemical oxidation were often coupled with the GCW to enhance performances of removing contaminants in groundwater. Researches about the GCW were mainly based on two kinds of methods, the sandbox experiments and simulation methods. According to these two kinds of approaches, the development and research progress of the GCW were described in detail. The mechanism of the GCW coupled with other remediation technologies were emphasized. The influences of different environmental and working conditions on the remediation performance of GCW were also summarized. Considering the current situation of the GCW associated researches in China, coupling with in-situ thermal remediation technologies is promising. Likewise, pilot tests should be conducted with the aim of providing references for the practical application of the GCW in contaminated sites.
-
表 1 常见示踪剂及其适用情况
Table 1. Common tracers and their application situations for researches about the GCW
示踪剂 特征 性质 适用情况 相关文献 红墨水 溶液呈红色 易溶于水,不易被石英砂吸附,易冲洗。 水相污染物的示踪试验 [49] 胭脂红染料 溶液呈红色 溶于水,不溶于油脂,不易被石英砂吸附,易冲洗。 水相污染物的示踪试验 [36-37,50] 苏丹染料 溶液呈红色 不溶于水,易溶于油脂、矿物油、丙酮、苯等。 非水相污染物的示踪试验 [51] 亮蓝溶液 溶液呈蓝色 惰性示踪剂,在水中溶解度高,易溶于乙醇、甘油、丙二醇等有机溶剂。 能够代替液相污染物,常用于
溶质运移可视化实验[35,52-54] 荧光素纳溶液 溶液呈黄红色,带有
很强黄绿色荧光溶于水和乙醇,分辨率高,成像清晰。 能够代替水相污染物,适用于
溶质运移可视化实验[46] 表 2 GCW修复效果的影响因素及机理
Table 2. Controlling factors and mechanisms of performances of the GCW
影响因素 影响机理 相关文献 含水层性质 地下水初始水位 在一定范围内初始水位越高,影响半径越大,但初始水位超出这个范围就会导致循环井影响范围过大,地下水由尾气口溢出,不能形成循环。 [58,111] 含水层各向异性比 在可以形成地下水环流的前提下,各向异性比值存在最优范围,在该范围内各向异性越大,影响范围越大,GCW修复效果越好。 [35,92] 水平渗透系数 在可以形成地下水环流的前提下,水平渗透系数适当增大,影响范围也随之增加,有利于污染物的降解。 [92,112] 污染物性质 挥发性和迁移性 污染物的挥发性越强,在地下水中迁移越快,GCW修复效果越好。 [19] 循环井运行参数 上下筛管间距 在地下水形成循环的条件下适量增加筛管间距,能够增强地下水循环速率,提高修复效率。 [18,75] 抽提速率 在循环井运行正常的情况下存在最优范围。抽提速率过小,会造成污染物去除不彻底,伴随水循环再次进入含水层;抽提速率过大,则会增大能耗,增加运行成本。 [40,92] 曝气量 在最优范围内,地下水循环强度随着曝气量的增加而逐渐增强,加快污染物在地下水中吹脱或降解;但曝气量增加到一定值后,不再加速地下水流动,造成能量损耗。 [10,58] -
[1] 张芊, 谢湉, 李书迪, 等. 活化过硫酸盐修复有机污染场地研究应用进展[J]. 河北环境工程学院学报, 2022, 32(6): 19-26. [2] 黄小龙. 地下水污染场地污染控制与修复研究[J]. 西部资源, 2022(6): 28-30. doi: 10.3969/j.issn.1672-562X.2022.06.011 [3] 尹秀贞. 地下水污染特征及其修复技术应用探析[J]. 地下水, 2018, 40(1): 73-75+118. doi: 10.3969/j.issn.1004-1184.2018.01.027 [4] 刘志阳. 地下水污染修复技术综述[J]. 环境与发展, 2016, 28(2): 1-4. [5] 刘雪松, 李敬杰, 蔡月梅. 井内气体吹脱技术原位修复有机污染地下水[J]. 油气田环境保护, 2016, 26(2): 10-13+60. [6] STAMM J. Vertical circulation flows for vadose and groundwater zone in situ (bio-) remediation[R]. Battelle Press, Columbus, OH (United States), 1995. [7] TOSCANI L, STEFANIA G A, MASUT E, et al. Groundwater flow numerical model to evaluate the water mass balance and flow patterns in Groundwater Circulation Wells (GCW) with varying aquifer parameters[J]. Acque Sotterranee-Italian Journal of Groundwater, 2022. [8] 苗竹, 吕正勇, 魏丽, 等. 地下水循环井技术概述[C]//中国环境科学学会. 2018中国环境科学学会科学技术年会论文集. 合肥, 2018: 714-719. [9] 李乃营, 王瑜, 孔令镕, 等. 地下水循环井修复技术发展现状综述[J]. 钻探工程, 2021, 48(9): 119-126. [10] 蒲生彦, 王宇, 王朋. 地下水循环井修复技术与应用: 关键问题、主要挑战及解决策略[J]. 安全与环境工程, 2021, 28(3): 78-86. [11] 赵思远, 方樟, 周睿, 等. 基于机器学习MLR模型的地下水循环井优化设计[J]. 安全与环境工程, 2023, 30(1): 192-198+211. [12] 刘宝蕴, 梁信, 孙跃林, 等. 一种循环井: CN201822228262. X[P]. 2020-01-14. [13] 刘宝蕴, 梁信, 孙跃林, 等. 一种用于修复污染地下水及其流经污染土壤的循环井: CN201822218364.3[P]. 2019-11-29. [14] 赵勇胜, 焦维琦, 孙超, 等. 基于增溶机理的Tween80强化地下水循井技术修复萘污染地下水[J]. 中南大学学报(自然科学版), 2015, 46(10): 3969-3974. [15] 何允玉, 王铎, 郭都. 地下水中挥发性有机污染物去除新技术——循环井工艺[J]. 资源节约与环保, 2013(3): 37-38. doi: 10.3969/j.issn.1673-2251.2013.03.025 [16] VATS O P, SHARMA B, STAMM J, et al. Groundwater circulation well for controlling saltwater intrusion in coastal aquifers: numerical study with experimental validation[J]. Water Resources Management, 2020, 34(11): 3551-3563. [17] 徐林建, 孙加山, 李燕明, 等. 地下水循环井技术的研究进展及应用分析[J]. 中国资源综合利用, 2020, 38(5): 83-85. doi: 10.3969/j.issn.1008-9500.2020.05.026 [18] 白静. 表面活性剂强化地下水循环井技术修复NAPL污染含水层研究[D]. 长春: 吉林大学, 2013. [19] 白静, 孙超, 赵勇胜. 地下水循环井技术对含水层典型NAPL污染物的修复模拟[J]. 环境科学研究, 2014, 27(1): 78-85. [20] 屈智慧, 王洪涛, 杨勇, 等. 循环井技术修复地下水氯苯污染的效果研究[J]. 化学工程师, 2016, 30(11): 29-32+19. [21] GOLTZ M N, HUANG J Q, CLOSE M E, et al. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction[J]. Journal of Contaminant Hydrology, 2008, 100: 127-136. [22] 王霄. 循环井—井内生物反应器技术修复苯胺污染含水层[D]. 长春: 吉林大学, 2013. [23] GANDHI R K, HOPKINS G D, GOLTZ M N, et al. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system[J]. Water Resources Research, 2002, 38(4): 10-1-10-15. [24] HUANG J, GOLTZ M N. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells[J]. Journal of Hydrology, 2005, 314(1-4): 67-77. [25] CHRIST J A, GOLTZ M N, HUANG J. Development and application of an analytical model to aid design and implementation of in situ remediation technologies[J]. Journal of Contaminant Hydrology, 1999, 37(3): 295-317. [26] PAPINI M P, MAJONE M M, ARJMAND F, et al. First pilot test on the integration of GCW (groundwater circulation well) with ENA (enhanced natural attenuation) for chlorinated solvents source remediation[J]. Chemical Engineering Transactions, 2016, 49: 91-96. [27] CHEN L, KNOX R C. Using vertical circulation wells for partitioning tracer tests and remediation of DNAPLs[J]. Ground Water Monitoring & Remediation, 1997, 17: 161-168. [28] STAMM J, ELDHO T, SCHOLZ M. Flow simulation of a system of groundwater circulation well and pumping well for NAPL site remediation[J]. WIT Transactions on Ecology and the Environment, 1998, 23: 99-106. [29] TATTI F, PAPINI M P, TORRETTA V, et al. Experimental and numerical evaluation of groundwater circulation wells as a remediation technology for persistent, low permeability contaminant source zones[J]. Journal of Contaminant Hydrology, 2019, 222: 89-100. [30] CIAMPI P, ESPOSITO C, BARTSCH E, et al. 3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site[J]. Science of the Total Environment, 2021, 793: 148649. [31] CIAMPI P, ESPOSITO C, BARTSCH E, et al. A data-driven modeling approach for the sustainable remediation of persistent arsenic (As) groundwater contamination in a fractured rock aquifer through a groundwater recirculation well (IEG-GCW®)[J]. Environmental Research, 2023, 217: 114827. [32] 丁小凡. 循环井水力驱动三维环流数值模拟及循环效果研究[D]. 长春: 吉林大学, 2022. [33] 顾维. 循环井技术修复地下水氯苯污染的效果分析[J]. 资源节约与环保, 2020(11): 45-46. doi: 10.3969/j.issn.1673-2251.2020.11.028 [34] 黄思涵, 万军伟. 应用图像分析法构建食用亮蓝浓度与色度的定量关系[J]. 安全与环境工程, 2020, 27(6): 7-12. [35] 张莉. 基于水动力的地下水循环井流场刻画及对TCE污染的修复效果[D]. 长春: 吉林大学, 2022. [36] 王志伟. 基于砂箱模型的滨海含水层储存与回采实验与模拟[D]. 济南: 济南大学, 2020. [37] 赵洁. 基于砂箱实验的滨海含水层管理数值模拟研究[D]. 烟台: 烟台大学, 2017. [38] 白静, 赵勇胜, 秦传玉. 重金属在含水层迁移实验方案设计[J]. 实验室研究与探索, 2018, 37(4): 45-48. doi: 10.3969/j.issn.1006-7167.2018.04.011 [39] 梁杏, 郭会荣. 水文地质学基础实验实习教程[M]. 北京: 地质出版社, 2009. [40] 孙蓉琳, 刘延锋, 潘欢迎, 等. 地下水流系统理论砂箱实验装置的研制与应用[J]. 实验室研究与探索, 2021, 40(7): 220-224. [41] 孙冉冉, 杨再福, 汪涛, 等. 地下水循环井技术处理土壤和地下水中甲基叔丁基醚研究[J]. 环境工程, 2017, 35(9): 186-191. [42] LIANG X, LIU Y, JIN M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573. [43] 孙冉冉. 电强化地下水循环井对有机污染场地的修复研究[D]. 上海: 东华大学, 2017. [44] GONEN O, GVIRTZMAN H. Laboratory-scale analysis of aquifer remediation by in-well vapor stripping, 1. Laboratory results[J]. Journal of Contaminant Hydrology, 1997, 29: 23-39. [45] 魏启炳. 热强化气相抽提修复挥发性有机物污染场地室内试验研究[D]. 南京: 东南大学, 2018. [46] TATTI F, PAPINI M P, RABONI M, et al. Image analysis procedure for studying Back-Diffusion phenomena from low-permeability layers in laboratory tests[J]. Scientific Reports, 2016, 6(1): 30400. [47] 廖志强. 土壤中挥发性有机物的气相抽提处理热强化技术研究[D]. 南昌: 华东理工大学, 2013. [48] 王泽坤. 含有透镜体的二维多孔介质溶质运移实验与模拟研究[D]. 合肥: 合肥工业大学, 2017. [49] 梁杏, 沈仲智, 刘宇, 等. 一种多级次地下水流动系统演示仪: CN200820066726.5[P]. 2009-01-14. [50] 樊帅, 周子琛, 张晓昉. 垂向环流井溶质运移试验及参数灵敏度分析[J]. 地下水, 2021, 43(6): 1-6. [51] 郑德凤, 赵勇胜, 王本德. 轻非水相液体在地下环境中的运移特征与模拟预测研究[J]. 水科学进展, 2002(3): 321-325. doi: 10.3321/j.issn:1001-6791.2002.03.010 [52] 赵勇胜, 陈震, 张佳文, 等. 有色示踪剂模拟槽实验图像分析法[J]. 吉林大学学报(地球科学版), 2018, 48(3): 846-853. [53] 谈叶飞, 周志芳. 溶质运移试验中有色示踪剂高锰酸钾和亮蓝适用性的对比[J]. 河海大学学报(自然科学版), 2008(1): 23-26. [54] YANG M, ANNABLE M D, JAWITZ J W. Light reflection visualization to determine solute diffusion into clays[J]. Journal of Contaminant Hydrology, 2014, 161: 1-9. [55] 谈叶飞, 周志芳. 有色示踪剂在溶质运移实验中的数字图像识别和处理[J]. 水文地质工程地质, 2007(1): 99-101+12. doi: 10.3969/j.issn.1000-3665.2007.01.022 [56] TATTI F, PAPINI M P, SAPPA G, et al. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis[J]. Science of the total environment, 2017, 622-623: 164-171. [57] 赵勇胜, 屈智慧, 周睿, 等. 原位修复受污染地下水的改进曝气井及修复方法: CN201110062196.3[P]. 2012-11-28. [58] 白静, 赵勇胜, 孙超, 等. 地下水循环井技术修复硝基苯污染含水层效果模拟[J]. 环境科学, 2014, 35(10): 3775-3781. [59] KAHLER D M, KABALA Z J. Rapidly pulsed pumping accelerates remediation in a vertical circulation well model[J]. Water, 2018, 10(10): 1423. [60] 程大伟, 冯申, 杨胜科, 等. 循环井技术对低渗透性透镜体二级污染源的修复效率评估方法[J]. 环境科学学报, 2022: 1-14. [61] LIU J W, WEI K H, XU S W, et al. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review[J]. Science of the Total Environment, 2021, 756: 144142. [62] KNOX R C, SABATINI D A, HARWELL J H, et al. Surfactant remediation field demonstration using a vertical circulation well[J]. Groundwater, 1997, 35(6): 948-953. [63] HUO L L, LIU G S, YANG X, et al. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures[J]. Chemosphere, 2020, 252: 126620. [64] 赵冬宇. 非均质含水层中水动力循环井的流场刻画及对表面活性剂修复硝基苯污染的强化效果[D]. 长春: 吉林大学, 2023. [65] HERZOG B M, KLEINKNECHT S M, HASLAUER C P, et al. Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design[J]. Journal of Contaminant Hydrology, 2023, 258: 104230. [66] LIU Y B, QU D, WEN Y J, et al. Low-temperature biodegradation of aniline by freely suspended and magnetic modified Pseudomonas migulae AN-1[J]. Applied Microbiology and Biotechnology, 2015, 99(12): 5317-5326. [67] CIAMPI P, ESPOSITO C, BARTSCH E, et al. Remediation of chlorinated aliphatic hydrocarbons (CAHs) contaminated site coupling groundwater recirculation well (IEG-GCW®) with a peripheral injection of soluble nutrient supplement (IEG-C-MIX) via multilevel-injection wells (IEG-MIW)[J]. Heliyon, 2022, 8(11): e11402. [68] 王朋, 陈文英, 蒲生彦. 地下水循环井原位强化生物修复技术研究进展[J]. 安全与环境工程, 2021, 28(3): 137-146. [69] 刘勇波. 适冷苯胺降解菌Pseudomonas migulae AN-1的好氧反硝化及生物循环井修复硝酸盐污染地下水研究[D]. 长春: 吉林大学, 2015. [70] ZHAO Y S, QU D, ZHOU R, et al. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells[J]. Environmental Science and Pollution Research, 2016, 23: 11568-11573. [71] YUAN S H, LIU Y, ZHANG P, et al. Electrolytic groundwater circulation well for trichloroethylene degradation in a simulated aquifer[J]. Science China Technological Sciences, 2020, 64: 251-260. [72] JASMANN J R, GEDALANGA P B, BORCH T, et al. Synergistic treatment of Mixed 1, 4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation[J]. Environmental Science & Technology, 2017, 51(21): 12619-12629. [73] 刘洋, 谢雯静, 郑云松, 等. 电化学循环井驱动模拟含水层化学氧化降解三氯乙烯[J]. 地学前缘, 2021, 28(5): 197-207. [74] 刘洋, 袁松虎, 张耀强, 等. 电化学循环井耦合氧化-还原降解地下水中三氯乙烯[J]. 水文地质工程地质, 2020, 47(3): 44-51. [75] 宋刚, 岳豪康, 李恒超, 等. 地下水循环井技术研究进展[J]. 地下水, 2022, 44(1): 9-13+108. [76] WEI K H, MA J, XI B D, et al. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. [77] WANG P, LI J, AN P, et al. Enhanced delivery of remedial reagents in low-permeability aquifers through coupling with groundwater circulation well[J]. Journal of Hydrology, 2023, 618: 129260. [78] 牛俊翔, 罗凯捷, 高卫国, 等. 一种用于土壤及地下水重金属污染原位修复的循环井装置: CN201720725436.6[P]. 2018-02-13. [79] WANG X Y, ZHANG L, HAN C M, et al. Simulation study of oxytetracycline contamination remediation in groundwater circulation wells enhanced by nano-calcium peroxide and ozone[J]. Scientific Reports, 2023, 13(1): 9136. [80] LEFRANCOIS M, FARMER M, CARVER M. Integrated three-dimensional geological and numerical groundwater model development[J]. Groundwater Monitoring & Remediation, 2023, 43(3): 121-128. [81] KABALA Z J. The dipole flow test: a new single-borehole test for aquifer characterization[J]. Water Resources Research, 1993, 29: 99-108. [82] ZLOTNIK V, LEDDER G. Theory of dipole flow in uniform anisotropic aquifers[J]. Water Resources Research, 1996, 32(4): 1119-1128. [83] PEURSEM D V, ZLOTNIK V, LEDDER G. Groundwater flow near vertical recirculatory wells: Effect of skin on flowgeometry and travel times with implications for aquifer remediation[J]. Journal of Hydrology, 1999, 222: 109-122. [84] SUTTON D J, KABALA Z J, SCHAAD D E, et al. The dipole-flow test with a tracer: a new single-borehole tracer test for aquifer characterization[J]. Journal of Contaminant Hydrology, 2000, 44(1): 71-101. [85] SUTTON P T, GINN T R. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation[J]. Journal of Contaminant Hydrology, 2014, 171: 32-41. [86] CHEN J S, JANG C S, CHENG C T, et al. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field[J]. Journal of Hydrology, 2010, 390: 155-168. [87] CHEN J S, LIU C W, CHAN Y C, et al. Effect of transverse dispersion on solute transport in a vertical dipole flow test with a tracer[J]. Journal of hydrology, 2011, 402(3-4): 206-216. [88] TU K, WU Q, SIMUNEK J, et al. An approximate analytical solution for non-Darcian flow in a confined aquifer with a single well circulation groundwater heat pump system[J]. Advances in Water Resources, 2020, 145: 103740. [89] TU K, WU Q, SIMUNEK J, et al. An analytical solution of groundwater flow in a confined aquifer with a single-well circulation system[J]. Water Resources Research, 2020, 56: 1-14. [90] MA C, SHI W G, ZHAN H B. On the vertical circulation wells in a leaky-confined aquifer[J]. Journal of Hydrology, 2022, 608: 127676. [91] LIN Y C, YANG S Y, FEN C S, et al. A general analytical model for pumping tests in radial finite two-zone confined aquifers with Robin-type outer boundary[J]. Journal of Hydrology, 2016, 540: 1162-1175. [92] ZHU Q, WEN Z, JAKADA H. A new solution to transient single-well push-pull test with low-permeability non-Darcian leakage effects[J]. Journal of Contaminant Hydrology, 2020, 234: 103689. [93] MOROZOV P E. Groundwater flow near a vertical circulation well with a skin-effect[J]. Water Resources, 2021, 48: 537-546. [94] GUI H L, WU Z G, ZHANG C P. Comparative study of different types of hydrological models applied to hydrological simulation[J]. CLEAN-Soil, Air, Water, 2021, 49(8): 2000381. [95] ARICò C. Hydraulic dynamic calculation and simulation[J]. Water, 2021, 13: 1234. [96] 王浩, 陆垂裕, 秦大庸, 等. 地下水数值计算与应用研究进展综述[J]. 地学前缘, 2010, 17(6): 1-12. [97] PINTO M J, GVIRTZMAN H, GORELICK S M. Laboratory-scale analysis of aquifer remediation by in-well vapor stripping 2. Modeling results[J]. Journal of Contaminant Hydrology, 1997, 29(1): 41-58. [98] SABATINI D A, KNOX R C, HARWELL J H, et al. Design of a surfactant remediation field demonstration based on laboratory and modeling studies[J]. Groundwater, 1997, 35(6): 954-963. [99] KATZ Y, GVIRTZMAN H. Capture and cleanup of a migrating VOC plume by the in-well vapor stripping: A sand tank experiment[J]. Journal of Contaminant Hydrology, 2000, 43: 25-44. [100] 樊帅. 垂向环流井对地下水流场及氨氮去除效果的影响[D]. 成都: 成都理工大学, 2020. [101] HERRLING B, BUERMANN W. A new method for in-situ remediation of volatile contaminants in groundwater - numerical simulation of the flow regime[C]//Computational Methods in Subsurface Hydrology International Conference Venice. Proceedings 8th International Conference. 1990: 299-304. [102] HERRLING B, STAMM J. Numerical results of calculated 3D vertical circulation flows around wells with two screen sections for in situ or on-site aquifer remediation[J]. Finite Elements in Water Resources, Proceedings of the International Conference, 1992, 1: 483-493. [103] PHILIP R D, WALTER G R. Prediction of flow and hydraulic head fields for vertical circulation wells[J]. Groundwater, 1992, 30(5): 765-773. [104] XIA Q, ZHANG Q, XU M, et al. Visualizing hydraulic zones of a vertical circulation well in presence of ambient flow[J]. Desalination and Water Treatment, 2019, 159: 151-160. [105] ZHU Q, WEN Z, LIU H. Microbial effects on hydraulic conductivity estimation by single-well injection tests in a petroleum-contaminated aquifer[J]. Journal of Hydrology, 2019, 573: 352-364. [106] ZHU Q, WEN Z, ZHAN H B, et al. Optimization strategies for in situ groundwater remediation by a vertical circulation well based on particle-tracking and node-dependent finite difference methods[J]. Water Resources Research, 2020, 56(11): 1-25. [107] ELMORE A C, DEANGELIS L. Modeling a ground water circulation well alternative[J]. Groundwater Monitoring & Remediation, 2004, 24(1): 66-73. [108] ELMORE A C, HELLMAN J B. Model-predicted groundwater circulation well performance[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2001, 5(4): 203-210. [109] JIN Y L, HOLZBECHER E, SAUTER M. Dual-screened vertical circulation wells for groundwater lowering in unconfined aquifers[J]. Groundwater, 2015, 54(1): 15-22. [110] MILLER G R, ELMORE A C. Modeling of a groundwater circulation well removal action alternative[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2005, 9(2): 122-129. [111] ELMORE A C, GRAFF T. Best available treatment technologies applied to groundwater circulation wells[J]. Remediation Journal, 2002, 12(3): 63-80. [112] ALLMON W E, EVERETT L G, LIGHTNER A T, et al. Groundwater circulating well technology assessment[J]. Groundwater Circulating Well Technology Assessment, 1999: 7-15. [113] 鲁亮, 蒲生彦, 李博文. 热强化循环井驱动热量传输及苯胺修复效果研究[J]. 中国环境科学, 2023: 1-17. [114] YUAN H W, QU Z H, ZHANG C Y, et al. Study on radius of influence of groundwater circulation well in the field experiment[J]. E3S Web of Conferences, 2022, 352: 1012.