[1] 张芊, 谢湉, 李书迪, 等. 活化过硫酸盐修复有机污染场地研究应用进展[J]. 河北环境工程学院学报, 2022, 32(6): 19-26.
[2] 黄小龙. 地下水污染场地污染控制与修复研究[J]. 西部资源, 2022(6): 28-30. doi: 10.3969/j.issn.1672-562X.2022.06.011
[3] 尹秀贞. 地下水污染特征及其修复技术应用探析[J]. 地下水, 2018, 40(1): 73-75+118. doi: 10.3969/j.issn.1004-1184.2018.01.027
[4] 刘志阳. 地下水污染修复技术综述[J]. 环境与发展, 2016, 28(2): 1-4.
[5] 刘雪松, 李敬杰, 蔡月梅. 井内气体吹脱技术原位修复有机污染地下水[J]. 油气田环境保护, 2016, 26(2): 10-13+60.
[6] STAMM J. Vertical circulation flows for vadose and groundwater zone in situ (bio-) remediation[R]. Battelle Press, Columbus, OH (United States), 1995.
[7] TOSCANI L, STEFANIA G A, MASUT E, et al. Groundwater flow numerical model to evaluate the water mass balance and flow patterns in Groundwater Circulation Wells (GCW) with varying aquifer parameters[J]. Acque Sotterranee-Italian Journal of Groundwater, 2022.
[8] 苗竹, 吕正勇, 魏丽, 等. 地下水循环井技术概述[C]//中国环境科学学会. 2018中国环境科学学会科学技术年会论文集. 合肥, 2018: 714-719.
[9] 李乃营, 王瑜, 孔令镕, 等. 地下水循环井修复技术发展现状综述[J]. 钻探工程, 2021, 48(9): 119-126.
[10] 蒲生彦, 王宇, 王朋. 地下水循环井修复技术与应用: 关键问题、主要挑战及解决策略[J]. 安全与环境工程, 2021, 28(3): 78-86.
[11] 赵思远, 方樟, 周睿, 等. 基于机器学习MLR模型的地下水循环井优化设计[J]. 安全与环境工程, 2023, 30(1): 192-198+211.
[12] 刘宝蕴, 梁信, 孙跃林, 等. 一种循环井: CN201822228262. X[P]. 2020-01-14.
[13] 刘宝蕴, 梁信, 孙跃林, 等. 一种用于修复污染地下水及其流经污染土壤的循环井: CN201822218364.3[P]. 2019-11-29.
[14] 赵勇胜, 焦维琦, 孙超, 等. 基于增溶机理的Tween80强化地下水循井技术修复萘污染地下水[J]. 中南大学学报(自然科学版), 2015, 46(10): 3969-3974.
[15] 何允玉, 王铎, 郭都. 地下水中挥发性有机污染物去除新技术——循环井工艺[J]. 资源节约与环保, 2013(3): 37-38. doi: 10.3969/j.issn.1673-2251.2013.03.025
[16] VATS O P, SHARMA B, STAMM J, et al. Groundwater circulation well for controlling saltwater intrusion in coastal aquifers: numerical study with experimental validation[J]. Water Resources Management, 2020, 34(11): 3551-3563.
[17] 徐林建, 孙加山, 李燕明, 等. 地下水循环井技术的研究进展及应用分析[J]. 中国资源综合利用, 2020, 38(5): 83-85. doi: 10.3969/j.issn.1008-9500.2020.05.026
[18] 白静. 表面活性剂强化地下水循环井技术修复NAPL污染含水层研究[D]. 长春: 吉林大学, 2013.
[19] 白静, 孙超, 赵勇胜. 地下水循环井技术对含水层典型NAPL污染物的修复模拟[J]. 环境科学研究, 2014, 27(1): 78-85.
[20] 屈智慧, 王洪涛, 杨勇, 等. 循环井技术修复地下水氯苯污染的效果研究[J]. 化学工程师, 2016, 30(11): 29-32+19.
[21] GOLTZ M N, HUANG J Q, CLOSE M E, et al. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction[J]. Journal of Contaminant Hydrology, 2008, 100: 127-136.
[22] 王霄. 循环井—井内生物反应器技术修复苯胺污染含水层[D]. 长春: 吉林大学, 2013.
[23] GANDHI R K, HOPKINS G D, GOLTZ M N, et al. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system[J]. Water Resources Research, 2002, 38(4): 10-1-10-15.
[24] HUANG J, GOLTZ M N. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells[J]. Journal of Hydrology, 2005, 314(1-4): 67-77.
[25] CHRIST J A, GOLTZ M N, HUANG J. Development and application of an analytical model to aid design and implementation of in situ remediation technologies[J]. Journal of Contaminant Hydrology, 1999, 37(3): 295-317.
[26] PAPINI M P, MAJONE M M, ARJMAND F, et al. First pilot test on the integration of GCW (groundwater circulation well) with ENA (enhanced natural attenuation) for chlorinated solvents source remediation[J]. Chemical Engineering Transactions, 2016, 49: 91-96.
[27] CHEN L, KNOX R C. Using vertical circulation wells for partitioning tracer tests and remediation of DNAPLs[J]. Ground Water Monitoring & Remediation, 1997, 17: 161-168.
[28] STAMM J, ELDHO T, SCHOLZ M. Flow simulation of a system of groundwater circulation well and pumping well for NAPL site remediation[J]. WIT Transactions on Ecology and the Environment, 1998, 23: 99-106.
[29] TATTI F, PAPINI M P, TORRETTA V, et al. Experimental and numerical evaluation of groundwater circulation wells as a remediation technology for persistent, low permeability contaminant source zones[J]. Journal of Contaminant Hydrology, 2019, 222: 89-100.
[30] CIAMPI P, ESPOSITO C, BARTSCH E, et al. 3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site[J]. Science of the Total Environment, 2021, 793: 148649.
[31] CIAMPI P, ESPOSITO C, BARTSCH E, et al. A data-driven modeling approach for the sustainable remediation of persistent arsenic (As) groundwater contamination in a fractured rock aquifer through a groundwater recirculation well (IEG-GCW®)[J]. Environmental Research, 2023, 217: 114827.
[32] 丁小凡. 循环井水力驱动三维环流数值模拟及循环效果研究[D]. 长春: 吉林大学, 2022.
[33] 顾维. 循环井技术修复地下水氯苯污染的效果分析[J]. 资源节约与环保, 2020(11): 45-46. doi: 10.3969/j.issn.1673-2251.2020.11.028
[34] 黄思涵, 万军伟. 应用图像分析法构建食用亮蓝浓度与色度的定量关系[J]. 安全与环境工程, 2020, 27(6): 7-12.
[35] 张莉. 基于水动力的地下水循环井流场刻画及对TCE污染的修复效果[D]. 长春: 吉林大学, 2022.
[36] 王志伟. 基于砂箱模型的滨海含水层储存与回采实验与模拟[D]. 济南: 济南大学, 2020.
[37] 赵洁. 基于砂箱实验的滨海含水层管理数值模拟研究[D]. 烟台: 烟台大学, 2017.
[38] 白静, 赵勇胜, 秦传玉. 重金属在含水层迁移实验方案设计[J]. 实验室研究与探索, 2018, 37(4): 45-48. doi: 10.3969/j.issn.1006-7167.2018.04.011
[39] 梁杏, 郭会荣. 水文地质学基础实验实习教程[M]. 北京: 地质出版社, 2009.
[40] 孙蓉琳, 刘延锋, 潘欢迎, 等. 地下水流系统理论砂箱实验装置的研制与应用[J]. 实验室研究与探索, 2021, 40(7): 220-224.
[41] 孙冉冉, 杨再福, 汪涛, 等. 地下水循环井技术处理土壤和地下水中甲基叔丁基醚研究[J]. 环境工程, 2017, 35(9): 186-191.
[42] LIANG X, LIU Y, JIN M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573.
[43] 孙冉冉. 电强化地下水循环井对有机污染场地的修复研究[D]. 上海: 东华大学, 2017.
[44] GONEN O, GVIRTZMAN H. Laboratory-scale analysis of aquifer remediation by in-well vapor stripping, 1. Laboratory results[J]. Journal of Contaminant Hydrology, 1997, 29: 23-39.
[45] 魏启炳. 热强化气相抽提修复挥发性有机物污染场地室内试验研究[D]. 南京: 东南大学, 2018.
[46] TATTI F, PAPINI M P, RABONI M, et al. Image analysis procedure for studying Back-Diffusion phenomena from low-permeability layers in laboratory tests[J]. Scientific Reports, 2016, 6(1): 30400.
[47] 廖志强. 土壤中挥发性有机物的气相抽提处理热强化技术研究[D]. 南昌: 华东理工大学, 2013.
[48] 王泽坤. 含有透镜体的二维多孔介质溶质运移实验与模拟研究[D]. 合肥: 合肥工业大学, 2017.
[49] 梁杏, 沈仲智, 刘宇, 等. 一种多级次地下水流动系统演示仪: CN200820066726.5[P]. 2009-01-14.
[50] 樊帅, 周子琛, 张晓昉. 垂向环流井溶质运移试验及参数灵敏度分析[J]. 地下水, 2021, 43(6): 1-6.
[51] 郑德凤, 赵勇胜, 王本德. 轻非水相液体在地下环境中的运移特征与模拟预测研究[J]. 水科学进展, 2002(3): 321-325. doi: 10.3321/j.issn:1001-6791.2002.03.010
[52] 赵勇胜, 陈震, 张佳文, 等. 有色示踪剂模拟槽实验图像分析法[J]. 吉林大学学报(地球科学版), 2018, 48(3): 846-853.
[53] 谈叶飞, 周志芳. 溶质运移试验中有色示踪剂高锰酸钾和亮蓝适用性的对比[J]. 河海大学学报(自然科学版), 2008(1): 23-26.
[54] YANG M, ANNABLE M D, JAWITZ J W. Light reflection visualization to determine solute diffusion into clays[J]. Journal of Contaminant Hydrology, 2014, 161: 1-9.
[55] 谈叶飞, 周志芳. 有色示踪剂在溶质运移实验中的数字图像识别和处理[J]. 水文地质工程地质, 2007(1): 99-101+12. doi: 10.3969/j.issn.1000-3665.2007.01.022
[56] TATTI F, PAPINI M P, SAPPA G, et al. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis[J]. Science of the total environment, 2017, 622-623: 164-171.
[57] 赵勇胜, 屈智慧, 周睿, 等. 原位修复受污染地下水的改进曝气井及修复方法: CN201110062196.3[P]. 2012-11-28.
[58] 白静, 赵勇胜, 孙超, 等. 地下水循环井技术修复硝基苯污染含水层效果模拟[J]. 环境科学, 2014, 35(10): 3775-3781.
[59] KAHLER D M, KABALA Z J. Rapidly pulsed pumping accelerates remediation in a vertical circulation well model[J]. Water, 2018, 10(10): 1423.
[60] 程大伟, 冯申, 杨胜科, 等. 循环井技术对低渗透性透镜体二级污染源的修复效率评估方法[J]. 环境科学学报, 2022: 1-14.
[61] LIU J W, WEI K H, XU S W, et al. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review[J]. Science of the Total Environment, 2021, 756: 144142.
[62] KNOX R C, SABATINI D A, HARWELL J H, et al. Surfactant remediation field demonstration using a vertical circulation well[J]. Groundwater, 1997, 35(6): 948-953.
[63] HUO L L, LIU G S, YANG X, et al. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures[J]. Chemosphere, 2020, 252: 126620.
[64] 赵冬宇. 非均质含水层中水动力循环井的流场刻画及对表面活性剂修复硝基苯污染的强化效果[D]. 长春: 吉林大学, 2023.
[65] HERZOG B M, KLEINKNECHT S M, HASLAUER C P, et al. Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design[J]. Journal of Contaminant Hydrology, 2023, 258: 104230.
[66] LIU Y B, QU D, WEN Y J, et al. Low-temperature biodegradation of aniline by freely suspended and magnetic modified Pseudomonas migulae AN-1[J]. Applied Microbiology and Biotechnology, 2015, 99(12): 5317-5326.
[67] CIAMPI P, ESPOSITO C, BARTSCH E, et al. Remediation of chlorinated aliphatic hydrocarbons (CAHs) contaminated site coupling groundwater recirculation well (IEG-GCW®) with a peripheral injection of soluble nutrient supplement (IEG-C-MIX) via multilevel-injection wells (IEG-MIW)[J]. Heliyon, 2022, 8(11): e11402.
[68] 王朋, 陈文英, 蒲生彦. 地下水循环井原位强化生物修复技术研究进展[J]. 安全与环境工程, 2021, 28(3): 137-146.
[69] 刘勇波. 适冷苯胺降解菌Pseudomonas migulae AN-1的好氧反硝化及生物循环井修复硝酸盐污染地下水研究[D]. 长春: 吉林大学, 2015.
[70] ZHAO Y S, QU D, ZHOU R, et al. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells[J]. Environmental Science and Pollution Research, 2016, 23: 11568-11573.
[71] YUAN S H, LIU Y, ZHANG P, et al. Electrolytic groundwater circulation well for trichloroethylene degradation in a simulated aquifer[J]. Science China Technological Sciences, 2020, 64: 251-260.
[72] JASMANN J R, GEDALANGA P B, BORCH T, et al. Synergistic treatment of Mixed 1, 4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation[J]. Environmental Science & Technology, 2017, 51(21): 12619-12629.
[73] 刘洋, 谢雯静, 郑云松, 等. 电化学循环井驱动模拟含水层化学氧化降解三氯乙烯[J]. 地学前缘, 2021, 28(5): 197-207.
[74] 刘洋, 袁松虎, 张耀强, 等. 电化学循环井耦合氧化-还原降解地下水中三氯乙烯[J]. 水文地质工程地质, 2020, 47(3): 44-51.
[75] 宋刚, 岳豪康, 李恒超, 等. 地下水循环井技术研究进展[J]. 地下水, 2022, 44(1): 9-13+108.
[76] WEI K H, MA J, XI B D, et al. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738.
[77] WANG P, LI J, AN P, et al. Enhanced delivery of remedial reagents in low-permeability aquifers through coupling with groundwater circulation well[J]. Journal of Hydrology, 2023, 618: 129260.
[78] 牛俊翔, 罗凯捷, 高卫国, 等. 一种用于土壤及地下水重金属污染原位修复的循环井装置: CN201720725436.6[P]. 2018-02-13.
[79] WANG X Y, ZHANG L, HAN C M, et al. Simulation study of oxytetracycline contamination remediation in groundwater circulation wells enhanced by nano-calcium peroxide and ozone[J]. Scientific Reports, 2023, 13(1): 9136.
[80] LEFRANCOIS M, FARMER M, CARVER M. Integrated three-dimensional geological and numerical groundwater model development[J]. Groundwater Monitoring & Remediation, 2023, 43(3): 121-128.
[81] KABALA Z J. The dipole flow test: a new single-borehole test for aquifer characterization[J]. Water Resources Research, 1993, 29: 99-108.
[82] ZLOTNIK V, LEDDER G. Theory of dipole flow in uniform anisotropic aquifers[J]. Water Resources Research, 1996, 32(4): 1119-1128.
[83] PEURSEM D V, ZLOTNIK V, LEDDER G. Groundwater flow near vertical recirculatory wells: Effect of skin on flowgeometry and travel times with implications for aquifer remediation[J]. Journal of Hydrology, 1999, 222: 109-122.
[84] SUTTON D J, KABALA Z J, SCHAAD D E, et al. The dipole-flow test with a tracer: a new single-borehole tracer test for aquifer characterization[J]. Journal of Contaminant Hydrology, 2000, 44(1): 71-101.
[85] SUTTON P T, GINN T R. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation[J]. Journal of Contaminant Hydrology, 2014, 171: 32-41.
[86] CHEN J S, JANG C S, CHENG C T, et al. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field[J]. Journal of Hydrology, 2010, 390: 155-168.
[87] CHEN J S, LIU C W, CHAN Y C, et al. Effect of transverse dispersion on solute transport in a vertical dipole flow test with a tracer[J]. Journal of hydrology, 2011, 402(3-4): 206-216.
[88] TU K, WU Q, SIMUNEK J, et al. An approximate analytical solution for non-Darcian flow in a confined aquifer with a single well circulation groundwater heat pump system[J]. Advances in Water Resources, 2020, 145: 103740.
[89] TU K, WU Q, SIMUNEK J, et al. An analytical solution of groundwater flow in a confined aquifer with a single-well circulation system[J]. Water Resources Research, 2020, 56: 1-14.
[90] MA C, SHI W G, ZHAN H B. On the vertical circulation wells in a leaky-confined aquifer[J]. Journal of Hydrology, 2022, 608: 127676.
[91] LIN Y C, YANG S Y, FEN C S, et al. A general analytical model for pumping tests in radial finite two-zone confined aquifers with Robin-type outer boundary[J]. Journal of Hydrology, 2016, 540: 1162-1175.
[92] ZHU Q, WEN Z, JAKADA H. A new solution to transient single-well push-pull test with low-permeability non-Darcian leakage effects[J]. Journal of Contaminant Hydrology, 2020, 234: 103689.
[93] MOROZOV P E. Groundwater flow near a vertical circulation well with a skin-effect[J]. Water Resources, 2021, 48: 537-546.
[94] GUI H L, WU Z G, ZHANG C P. Comparative study of different types of hydrological models applied to hydrological simulation[J]. CLEAN-Soil, Air, Water, 2021, 49(8): 2000381.
[95] ARICò C. Hydraulic dynamic calculation and simulation[J]. Water, 2021, 13: 1234.
[96] 王浩, 陆垂裕, 秦大庸, 等. 地下水数值计算与应用研究进展综述[J]. 地学前缘, 2010, 17(6): 1-12.
[97] PINTO M J, GVIRTZMAN H, GORELICK S M. Laboratory-scale analysis of aquifer remediation by in-well vapor stripping 2. Modeling results[J]. Journal of Contaminant Hydrology, 1997, 29(1): 41-58.
[98] SABATINI D A, KNOX R C, HARWELL J H, et al. Design of a surfactant remediation field demonstration based on laboratory and modeling studies[J]. Groundwater, 1997, 35(6): 954-963.
[99] KATZ Y, GVIRTZMAN H. Capture and cleanup of a migrating VOC plume by the in-well vapor stripping: A sand tank experiment[J]. Journal of Contaminant Hydrology, 2000, 43: 25-44.
[100] 樊帅. 垂向环流井对地下水流场及氨氮去除效果的影响[D]. 成都: 成都理工大学, 2020.
[101] HERRLING B, BUERMANN W. A new method for in-situ remediation of volatile contaminants in groundwater - numerical simulation of the flow regime[C]//Computational Methods in Subsurface Hydrology International Conference Venice. Proceedings 8th International Conference. 1990: 299-304.
[102] HERRLING B, STAMM J. Numerical results of calculated 3D vertical circulation flows around wells with two screen sections for in situ or on-site aquifer remediation[J]. Finite Elements in Water Resources, Proceedings of the International Conference, 1992, 1: 483-493.
[103] PHILIP R D, WALTER G R. Prediction of flow and hydraulic head fields for vertical circulation wells[J]. Groundwater, 1992, 30(5): 765-773.
[104] XIA Q, ZHANG Q, XU M, et al. Visualizing hydraulic zones of a vertical circulation well in presence of ambient flow[J]. Desalination and Water Treatment, 2019, 159: 151-160.
[105] ZHU Q, WEN Z, LIU H. Microbial effects on hydraulic conductivity estimation by single-well injection tests in a petroleum-contaminated aquifer[J]. Journal of Hydrology, 2019, 573: 352-364.
[106] ZHU Q, WEN Z, ZHAN H B, et al. Optimization strategies for in situ groundwater remediation by a vertical circulation well based on particle-tracking and node-dependent finite difference methods[J]. Water Resources Research, 2020, 56(11): 1-25.
[107] ELMORE A C, DEANGELIS L. Modeling a ground water circulation well alternative[J]. Groundwater Monitoring & Remediation, 2004, 24(1): 66-73.
[108] ELMORE A C, HELLMAN J B. Model-predicted groundwater circulation well performance[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2001, 5(4): 203-210.
[109] JIN Y L, HOLZBECHER E, SAUTER M. Dual-screened vertical circulation wells for groundwater lowering in unconfined aquifers[J]. Groundwater, 2015, 54(1): 15-22.
[110] MILLER G R, ELMORE A C. Modeling of a groundwater circulation well removal action alternative[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2005, 9(2): 122-129.
[111] ELMORE A C, GRAFF T. Best available treatment technologies applied to groundwater circulation wells[J]. Remediation Journal, 2002, 12(3): 63-80.
[112] ALLMON W E, EVERETT L G, LIGHTNER A T, et al. Groundwater circulating well technology assessment[J]. Groundwater Circulating Well Technology Assessment, 1999: 7-15.
[113] 鲁亮, 蒲生彦, 李博文. 热强化循环井驱动热量传输及苯胺修复效果研究[J]. 中国环境科学, 2023: 1-17.
[114] YUAN H W, QU Z H, ZHANG C Y, et al. Study on radius of influence of groundwater circulation well in the field experiment[J]. E3S Web of Conferences, 2022, 352: 1012.