-
优控污染物(priority pollutants)筛选是指从众多有毒有害的污染物中筛选出在环境中检出率高、对周围环境和人体健康危害较大,并具有不可逆性和潜在环境威胁的化学物质,并最终实现优先控制的目的[1 − 2]. 近年来,随着工农业生产以及社会经济的快速发展,人们对化学品的消费量也在逐渐增加. 除了重金属、有机氯农药(OCPs)、多环芳烃(PAHs)、多氯联苯(PCBs)等传统污染物外,越来越多的新污染物,如抗生素、内分泌干扰物、微塑料等化学品也被大量生产并应用于人类生产和生活的各个领域[3]. 目前,化学文摘号(CAS)中注册的化学品已超过2.04亿[4],而且这个清单的总数每天都在持续增长,其中许多使用的化学物质最终进入水环境,对水生生态系统和人类健康造成潜在危害. 从水环境管理的角度来说,面对种类繁多的污染物,如果对每种污染物都进行监测和治理需要消耗大量的资源和精力,且难以实现. 因此,必要和可行的方法是集中有限资源,从数以万计的化合物中识别出水环境中的高风险化合物,将其确定为优先控制污染物. 优先监测、评估和管控对人体健康危害大、环境含量高的污染物,是科学开展水环境质量保护和污染治理的基础.
优控污染物筛选的研究工作最先开始于美国,上世纪70年代,美国国家环境保护局在筛选优控污染物时,将水生生物和人类健康状况作为主要评价指标,制定了包含129种污染物的水环境优先控制污染物清单[5];在1987年,美国根据国家优先名单(NPL)监测点污染物的出现频率、毒性效应和对人体潜在危害等指标对污染物进行优先排序,并于每两年更新一次名单[6 − 8]. 欧盟[9]、日本[10]、加拿大[11]等在参考美国筛选优控污染物方法的基础上,考虑了各自国家特定环境情况,也陆续开展了相关的筛选工作. 欧盟建立了一套基于监测和模型的优控污染物筛选方案,采用相对风险的评价方法,依据危险性和危害性的优先度对污染物进行计分排序,后经专家研判,筛选出水环境中的优控物质[12 − 13]. 日本政府采用Hasse图解法,测定污染物在水中的浓度,选择与人体健康及环境保护相关的筛选因子,经过初选、精选和复审三道筛选流程,进行优控污染物的筛选[14]. 加拿大环境部应用化学危害和管理策略评估模型(CHEMS-1),根据污染物的排放、毒性和暴露特征计算风险,基于风险排序确定和评估优先控制物质[11]. 除此之外,澳大利亚、荷兰、德国、韩国、俄罗斯等国家也建立了较完整的优控污染物筛选体系,制定了各自的优先控制污染物清单[15].
我国优控污染物筛选的研究工作相较于国外开展较晚. 1989年原国家环境保护局以环境监测数据和专家评审方式制定了“中国水中优先控制污染物黑名单”,共筛选出68种污染物,其中推荐近期实施的污染物有48种[16]. 随后,我国各省市环保部门和部分科研院所也相继制定了水环境优控污染物名单. 例如,浙江省第一批环境优先污染物黑名单[17]、四川省优先污染物名单[18 − 19]、甘肃省优先控制有毒化学品名单[20]、福建省水环境优先污染物名单[21]、天津市水体中优先有机物名单[22]等. 生态环境部于2021年发布了《优先评估化学物质筛选技术导则》,规定了优先评估化学物质筛选的原则、程序和技术要求,建议作为各级部门及企事业单位等确定优先评估化学物质的技术依据.
水环境优控污染物筛选研究进展
Research progress on screening priority pollutants in aquatic environments
-
摘要: 随着社会经济的快速发展,大量污染物排放到水环境中,使得水环境污染和治理问题备受关注. 明确水环境优控污染物是科学有序开展水污染治理的前提. 本文综述了水环境优控污染物筛选的原则和常用技术方法,并分析了不同方法的优缺点. 通过比较不同水环境体系优控污染物的筛选结果,发现不同系统的优控污染物名单具有较大差异,因此应根据各地不同的污染特征,制定因地制宜的优控污染物名单. 此外,在传统污染物筛选工作的基础上,未来应加强对新污染物的监测和评估,及时更新优控污染物名单,为水环境的保护和治理提供更全面的决策依据.Abstract: With the rapid development of economy, a large amount of pollutants have been discharged into the aquatic environments, making the treatment of aquatic pollutants being one of the most concerned environmental problem. Screening priority pollutants is a prerequisite for the scientific and orderly control of pollution in aquatic environments. This paper reviews the principles and commonly used methods for screening priority pollutants in aquatic environments, and discusses the advantages and disadvantages of different methods. Significant differences were observed in the list of priority pollutants in different aquatic systems, indicating that it is necessary to generate a specific list of priority pollutants for different systems based on their pollution characteristics. Besides screening priority pollutants from traditional pollutants, the monitoring and assessment of emerging pollutants should be strengthened in the future. It is also necessary to update the list of priority pollutants in a timely manner to provide more comprehensive decision-making basis for the protection of aquatic environments and the treatment of pollutants.
-
Key words:
- aquatic environments /
- priority pollutants /
- screening methods /
- prioritize /
- toxicity of pollutants.
-
表 1 河流优控污染物筛选结果
Table 1. Screening of priority pollutants in rivers
河流
River筛选方法
Screening methods筛选结果
Screening results参考文献
Reference松花江 综合排序 5种硝基苯类、5种氯苯类 [65] 沙颖河 综合评分法 10种重金属、13种有机农药、3种取代苯、9种卤代脂肪烃、1种苯胺类、1种酞酸酯类、2种多氯联苯、1种多环芳烃 [70] 细河、蒲河 潜在危害指数法、商值法 6种酞酸酯类和6种苯酚 [57] 松花江吉林江段 综合排序 5种苯系物类、4种苯胺类、3种酞酸酯类、8种农药、4种金属、2种酚类、2种化合物、1种挥发性卤代烃类、1种氯代苯类、1种硝基苯类 [66] 海城河 潜在危害指数法、综合评分法 7种酯和酞酸酯类、7种含氮杂环类、5种胺及苯胺类、6种氯苯类、5种硝基苯类、7种苯酚类、5种苯及其它取代苯类、2种多环芳烃类 [71] 长江干流重庆段 高通量分析方法和综合评分法 11种农药、17种工业用品、5种个人护理品 [72] 浑河沈阳段 潜在危害法 9种重金属、5种苯系类、1种氰化物、1种酚类、2种酞酸酯类、3种化合物 [25] 浑河沈阳段 潜在危害指数法 16种稠环芳烃类、14种酚类、11种苯系物、5种酞酸酯、4种有机农药、3种硝基苯、24种挥发性卤代烃、10种卤代芳烃、4种醚类、3种杂环、2种含硫化合物、1种亚硝胺、4种其它类别 [56] 美国密尔沃基河 综合评分法 氟蒽、苯并[a]芘、芘、阿特拉津、异丙甲草胺、菲和避蚊胺 [41] 五大湖支流 EAR暴露活性比 双酚A、己烯雌酚、雌酮、雌三醇、17β-雌二醇、17α-雌二醇 [40] 保加利亚斯特鲁玛河 自组织映射神经网络(SOM)和Hasse图解法 硝酸盐、铵、氧化能力、COD、BOD [61] 埃布罗河、略布雷加特河、朱卡尔河和瓜达尔基维尔河 综合评分法 毒死蜱、毒虫畏、二嗪农、除线磷、咪鲜胺、乙硫磷、呋喃丹、敌草隆、壬基酚、辛基酚 [68] 美国河流 综合评分法 炔雌醇甲醚、19-诀诺酮、地美环素、氟甲喹、磷酸三(2-正丁氧乙基)酯、甲基苯亚甲基樟脑、雌三醇、邻苯二甲酸二辛酯、17α-雌二醇、顺式雄酮、马萘雌酮、马烯雌酮、甲基对硫磷、三氯生、环丙沙星、诺氟沙星、土霉素、磺胺噻唑、华法林、林丹 [67] 斯洛伐克河流 风险商 1,1,2-三氯乙烷、苯胺、砷、苯磺酰胺、苯并噻唑、联苯、双酚A、氯吡啶、铜、铬、氰化物、甜菜安、邻苯二甲酸二丁酯、二苯胺、乙氧呋草黄、甲醛、草甘膦、二甲四氯、2,6-二叔丁基对甲酚、多氯联苯、二甲戊灵、菲、甲苯、苯乙烯、二甲苯、锌 [73] 克罗地亚萨瓦河 风险商 多环芳烃、直链烷基苯磺酸盐、烷基酚聚氧乙烯醚 [69] 表 2 湖泊优控污染物筛选结果
Table 2. Screening of priority pollutants in lakes
湖泊
Lake筛选方法
Screening methods筛选结果
Screening results参考文献
Reference升金湖 综合评分法 邻苯二甲酸二乙基己酯、邻苯二甲酸二环己酯、PCB138、邻苯二甲酸二正辛酯、邻苯二甲酸二壬酯、七氯、p,p′-滴滴涕、钡、环氧七氯、邻苯二甲酸二己酯 [76] 涨渡湖 综合评分法 11种多氯联苯、8种有机氯农药、6种多环芳烃、4种邻苯二甲酸酯、4种挥发性有机物和8种
金属[79] 鄱阳湖 综合评分法 8种邻苯二甲酸酯、6种有机氯农药、6种多氯联苯、5种多环芳烃和2种抗生素 [75] 太湖 风险商 2-硝基苯酚、对氯间二甲苯酚、邻苯二酚 [78] 坦桑尼亚湖泊 综合评分法 5种邻苯二甲酸酯、6种多氯联苯、6种多环芳烃和8种有机氯农药 [80] 五大湖 综合评分法 茚并(1,2,3-cd)芘、苯乙烯、锑、丙烯腈 [82] 五大湖 风险商 甲基谷硫磷、毒死蜱、二嗪农、马拉硫磷、异丙甲草胺、布洛芬、多环芳烃、壬基酚聚氧乙
烯醚[83] 埃及马尤特湖 风险商 苯酚、甲酚、2,4-二硝基苯酚、4-硝基苯酚、邻氯酚、2,3,4,6-四氯苯酚和2,4-二甲基苯酚 [77] 表 3 海洋优控污染物筛选结果
Table 3. Screening of priority pollutants in marine environments
海域
Maritime area筛选方法
Screening methods筛选结果
Screening results参考文献
Reference渤海近岸海域 综合评分法 多环芳烃、多氯联苯、滴滴涕、六六六、七氯、狄氏剂、硝基苯、五氯苯、六氯苯、有机锡、艾试剂、毒死蜱、五氯酚、硫丹、阿特拉津、壬基酚、辛基酚、苯胺、多溴联苯醚、三氯甲烷 [85] 辽东湾 综合评分法和潜在危害指数法 Cd、Cu [86] 大连湾 模糊评判系统 三氯乙烯、α-硝基萘、1,1-二氯乙烯、聚乙烯、苯、γ-六六六、α-六六六、六氯乙烷 [50] 大连湾 密切值法 1,2-二氯苯和1-十六烯 [51] 北海 风险商 萘、水杨酸、西玛津、邻苯二甲酸二乙酯、磺胺甲恶唑、四溴二苯醚、邻苯二甲酸二环己酯、乐果、孕二烯、六溴二苯醚 [87] 欧洲大西洋水域 综合评分法 苯、苯乙烯单体、二甲苯、环己烷、甲苯、壬烯、苯胺、丙烯腈、硝基苯、异壬醇、烷基苯、壬基酚聚乙氧基化物、辛烷、1-壬醇丙烯酸丁酯、己二酸二(2-乙基己基)酯、三氯乙烯己烷、庚烷、1-十二烷醇甲酚、癸酸、四氯乙烯 [88] 普吉特海湾 风险商 阿奇霉素、双酚A、邻苯二甲酸丁苄酯、咖啡因、卡马西平、环丙沙星、邻苯二甲酸二异壬酯、雌二醇、雌酮、苯酚、三氯生等57种 [29] 表 4 地下水优控污染物筛选结果
Table 4. Screening of priority pollutants in groundwater
地区
Area筛选方法
Screening methods筛选结果
Screening results参考文献
Reference石河子地区 综合评分法 Hg、As [94] 石油炼制厂 综合评分法 苯、甲苯、乙苯、二甲苯、石油烃、苯酚、挥发性酚类、As、Pb、Mn [26] 福泉市磷矿开采聚集区 潜在危害指数法和
综合评分法TP、F-、Fe、Mn、Hg、Ni、Sb、As、Pb、Cd [93] 格尔木地区 综合评分法 TDS、总硬度、Cl-、SO42-、Na、F、总铁、芘、菲、Al [95] 新疆阿克苏 潜在危害指数法和
综合评分法苯并(a)芘、As、Pb和Cd [58] 大武水源地 潜在危害指数法和
综合评分法三氯甲烷、三氯乙烯、四氯乙烯、四氯化碳、苯 [96] 雄安新区 综合评分法 苯并(a)芘、六氯苯、As、Se、阿特拉津、苯并(b)荧蒽、Ni、Mo、Ti、萘 [48] 下辽河平原区 潜在危害指数法与
综合评分法As、NH4+、1,1,2-三氯乙烷、溴二氯甲烷、一氯二溴甲烷、1,1-二氯乙烯、α-六六六、p,p'-DDD、p,p'-DDE、苯并(a)芘 [97] 山西省7个焦化厂 综合评分法 萘、苯、甲苯、1,2-二氯乙烷、苯酚、Cu、Ni、Pb、Cd、Hg [92] 小清河沿岸 密切值法 58种有机化合物中有19种优先控制污染物 [59] 美国 综合评分法 As、Cr、Cd、四氯化碳、氯仿、1,1-二氯乙烯和二溴化乙烯 [98] 西班牙加那利群岛大加那利岛 浓度 甲草胺、阿特拉津、氯芬磷、乙基毒死蜱、敌草隆、六氯苯、六氯丁二烯、异丙隆、五氯苯、西玛津、三丁基氯化锡、硫丹、六氯环己烷、多氯联苯、三氯苯 [99] 表 5 饮用水源地优控污染物筛选结果
Table 5. Screening of priority pollutants in potable water sources
城市
City筛选方法
Screening methods筛选结果
Screening results参考文献
Reference淮安县 潜在危害指数法和
综合评分法Cd、Hg、Pb、Ni、Cr、As、Cu、苯并(a)芘、五氯联苯、邻苯二甲酸二丁酯、
邻苯二甲酸二(2-乙基己基)酯、四氯化碳[2] 南方某市 潜在危害法和
综合评分法Hg、Cd、Pb、Ni、As、苯、Cu、六氯苯、苯酚、乙苯、甲苯、1,2-二氯苯、邻苯二甲酸二丁酯、
苯并(a)芘、邻苯二甲酸二(2-乙基己基)酯、三氯甲烷、五氯苯酚、Cr、1,4-二氯苯、[47] 扬州市 潜在危害指数法和
综合评分法苯醚甲环唑、多菌灵、毒死蜱、己唑醇、环丙唑、噻呋酰胺、氯氟吡氧乙酸、苄嘧磺隆、
吡蚜酮、三环唑、噻虫嗪、咪鲜胺、戊唑醇、异丙隆、总氮、总磷[103] 长江下游 风险商 甲羟孕酮、群勃龙 [101] 华东地区 风险商 苯醚甲环唑、烯酰吗啉、乙草胺、咖啡因、卡马西平、多菌灵、多效唑、嘧霉胺 [102] 内蒙古 风险商 F、As、Mn [88] 美国 综合评分法 炔雌醇甲醚、炔诺酮、地美环素、氟甲喹、磷酸三(2-正丁氧乙基)酯、甲基苯亚甲基樟脑、
雌三醇、邻苯二甲酸二辛酯、17α-雌二醇、顺式雄酮、马萘雌酮、马烯雌酮、甲基对硫磷、
三氯生、环丙沙星、诺氟沙星、土霉素、磺胺噻唑、华法林、林丹[67] 英国 风险商 3,5,6-三氯-2-吡啶醇、噻磺隆、醚菌酯 [104] 加利福尼亚 风险商 多菌灵、涕灭威亚砜、RP30228 [104] -
[1] 崔建升, 徐富春, 刘定, 等. 优先污染物筛选方法进展[C]. 中国环境科学学会2009年学术年会论文集(第四卷). 北京: 北京航空航天大学出版社, 2009: 841-844. CUI J S, XU F C, LIU D, et al. Progress in screening methods for priority pollutants[C]. Proceedings of the 2009 Academic Annual Conference of the Chinese Society of Environmental Sciences(Volume 4). Beijing: Beijing University of Aeronautics and Astronautics Press, 2009: 841-844 (in Chinese).
[2] 许秋瑾, 李丽, 梁存珍, 等. 淮安某县农村饮用水源中优控污染物的筛选研究[J]. 中国环境科学, 2013, 33(4): 631-638. XU Q J, LI L, LIANG C Z, et al. Screening of priority control pollutants from the rural drinking water sources in Huai’an City[J]. China Environmental Science, 2013, 33(4): 631-638 (in Chinese).
[3] ABAFE O A, LAWAL M A, CHOKWE T B. Non-targeted screening of emerging contaminants in South African surface and wastewater[J]. Emerging Contaminants, 2023, 9(4): 100246. doi: 10.1016/j.emcon.2023.100246 [4] CAS Registry[DB]. [2023-10-18]. [5] US EPA. Toxic and priority pollutants[EB/OL]. [2023-07-28]. [6] SNYDER E M, SNYDER S A, GIESY J P, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes[J]. Environmental Science and Pollution Research, 2000, 7(1): 52-61. doi: 10.1007/BF03028072 [7] SWANSON M B, DAVIS G A, KINCAID L E, et al. A screening method for ranking and scoring chemicals by potential human health and environmental impacts[J]. Environmental Toxicology and Chemistry, 1997, 16(2): 372-383. doi: 10.1002/etc.5620160237 [8] ATSDR. Substance priority list (SPL) resource page[EB/OL]. [2023-07-28]. [9] TEIXIDÓ E, TERRADO M, GINEBREDA A, et al. Quality assessment of river waters using risk indexes for substances and sites, based on the COMMPS procedure[J]. Journal of Environmental Monitoring, 2010, 12(11): 2120-2127. doi: 10.1039/c0em00108b [10] LERCHE D, MATSUZAKI S Y, SØRENSEN P B, et al. Ranking of chemical substances based on the Japanese Pollutant Release and Transfer Register using partial order theory and random linear extensions[J]. Chemosphere, 2004, 55(7): 1005-1025. doi: 10.1016/j.chemosphere.2004.01.023 [11] DUNN A M. A relative risk ranking of selected substances on Canada’s national pollutant release inventory[J]. Human and Ecological Risk Assessment, 2009, 15(3): 579-603. doi: 10.1080/10807030902892562 [12] HANSEN B G, van HAELST A G, van LEEUWEN K, et al. Priority setting for existing chemicals: European Union risk ranking method[J]. Environmental Toxicology and Chemistry, 1999, 18(4): 772-779. doi: 10.1002/etc.5620180425 [13] van HAELST A G, HANSEN B G. Priority setting for existing chemicals: Automated data selection routine[J]. Environmental Toxicology and Chemistry, 2000, 19(9): 2372-2377. doi: 10.1002/etc.5620190930 [14] LERCHE D, SØRENSEN P B, LARSEN H S, et al. Comparison of the combined monitoring-based and modelling-based priority setting scheme with partial order theory and random linear extensions for ranking of chemical substances[J]. Chemosphere, 2002, 49(6): 637-649. doi: 10.1016/S0045-6535(02)00390-9 [15] 环境保护部科技标准司. 国内外化学污染物环境与健康风险排序比较研究 [M]. 北京: 科学出版社, 2010. Science and Technology Standards Department of the Ministry of Environmental Protection. Comparative study of environmental and health risk ranking of chemical pollutants at home and abroad[M]. Beijing: Science Press, 2010 (in Chinese).
[16] 周文敏, 傅德黔, 孙宗光. 中国水中优先控制污染物黑名单的确定[J]. 环境科学研究, 1991, 4(6): 9-12. ZHOU W M, FU D Q, SUN Z G. Determination of black list of China’s priority pollutants in water[J]. Research of Environmental Sciences, 1991, 4(6): 9-12 (in Chinese).
[17] 方路乡, 胡望钧. 浙江省第一批环境优先污染物黑名单研究[J]. 环境污染与防治, 1991, 13(3): 8-11. FANG L X, HU W J. Research on the Blacklist of the First Batch of Environmental Priority Pollutants in Zhejiang Province[J]. Environmental Pollution & Control, 1991, 13(3): 8-11 (in Chinese).
[18] 刘仲秋, 史箴, 郭华, 等. 四川省优先污染物的研究(上)[J]. 环境保护, 1992, 20(1): 39-40. LIU Z Q, SHI Z, GUO H, et al. Research on Priority Pollutants in Sichuan Province (Part 1)[J]. Environmental Protection, 1992, 20(1): 39-40 (in Chinese).
[19] 刘仲秋, 史箴, 郭华, 等. 四川省优先污染物的研究(下)[J]. 环境保护, 1992, 20(1): 36-37. LIU Z Q, SHI Z, GUO H, et al. Research on Priority Pollutants in Sichuan Province (Part 2)[J]. Environmental Protection, 1992, 20(1): 39-40 (in Chinese).
[20] 任双梅, 杨良年, 甄继琪, 等. 甘肃省优先控制有毒化学品名单筛选研究[J]. 甘肃环境研究与监测, 1996(1): 8-11. REN S M, YANG L N, ZHEN J Q, et al. Research on the Screening of the List of Priority Controlled Toxic Chemicals in Gansu Province[J]. Gansu Envionmental Study and Monitoriny, 1996(1): 8-11 (in Chinese).
[21] 印楠. 福建省水环境优先污染物初探[J]. 福建环境, 1997(4): 6, 15. YIN N. Preliminary study on priority pollutants of water environment in Fujian Province[J]. Fujian Environment, 1997(4): 6, 15 (in Chinese).
[22] 宋仁高, 王菊先. 天津市水体中优先有机污染物的筛选[J]. 中国环境科学, 1992, 12(4): 276-280. SONG R G, WANG J X. Screening of priority organic pollutants in water bodies of Tianjin city[J]. China Environmental Science, 1992, 12(4): 276-280 (in Chinese).
[23] 裴淑玮, 周俊丽, 刘征涛. 环境优控污染物筛选研究进展[J]. 环境工程技术学报, 2013, 3(4): 363-368. PEI S W, ZHOU J L, LIU Z T. Research progress on screening of environment priority pollutants[J]. Journal of Environmental Engineering Technology, 2013, 3(4): 363-368 (in Chinese).
[24] 王向明, 万方, 杨银锁, 等. 黄浦江上游优先控制有机物的筛选[J]. 环境监测管理与技术, 1996, 8(5): 13-15. WANG X M, WAN F, YANG Y S, et al. The sifting of the prior control organic substance of the water resouces in the upper reaches of Huangpu River[J]. The Administration and Technique of Environmental Monitoring, 1996, 8(5): 13-15. (in Chinese).
[25] 郭秋岑. 浑河水体的优控污染物筛选研究[J]. 建筑与预算, 2020(5): 68-71. GUO Q C. Research on the screening of priority pollutants in the Hunhe River[J]. Construction and Budget, 2020(5): 68-71 (in Chinese).
[26] 李煜婷, 许德刚, 李巨峰, 等. 典型石油炼制厂地下水中优先控制污染物识别方法的建立和验证[J]. 环境工程学报, 2019, 13(11): 2770-2780. LI Y T, XU D G, LI J F, et al. Establishment and verification of the recognition method of the priority pollutants in groundwater of the typical petroleum refining enterprise[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2770-2780 (in Chinese).
[27] 杨友明, 柳庸行, 王维国, 等. 潜在有毒化学品优先控制名单筛选方法研究[J]. 环境科学研究, 1993, 6(1): 1-9. YANG Y M, LIU Y X, WANG W G, et al. Study on the priority controlled method of potentially toxic chemicals[J]. Research of Environmental Sciences, 1993, 6(1): 1-9 (in Chinese).
[28] ZHONG M M, WANG T L, ZHAO W X, et al. Emerging organic contaminants in Chinese surface water: Identification of priority pollutants[J]. Engineering, 2022, 11: 111-125. doi: 10.1016/j.eng.2020.12.023 [29] JAMES C A, SOFIELD R, FABER M, et al. The screening and prioritization of contaminants of emerging concern in the marine environment based on multiple biological response measures[J]. Science of the Total Environment, 2023, 886: 163712. doi: 10.1016/j.scitotenv.2023.163712 [30] HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342. doi: 10.1016/j.talanta.2005.09.037 [31] HAWKINS C, FOSTER G, GLABERMAN S. Chemical prioritization of pharmaceuticals and personal care products in an urban tributary of the Potomac River[J]. Science of the Total Environment, 2023, 881: 163514. doi: 10.1016/j.scitotenv.2023.163514 [32] PANTAZIDOU M, KAPNIARIS S, KATSIRI A, et al. Pollutant trends and hazard ranking in Elefsis Bay, Greece[J]. Desalination, 2007, 210(1/2/3): 69-82. [33] RIVA F, ZUCCATO E, DAVOLI E, et al. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy[J]. Journal of Hazardous Materials, 2019, 361: 103-110. doi: 10.1016/j.jhazmat.2018.07.099 [34] ZHANG Y Q, JOHNSON A C, SU C, et al. Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem?[J]. Chemosphere, 2017, 178: 11-18. doi: 10.1016/j.chemosphere.2017.02.137 [35] SU C, LU Y L, JOHNSON A C, et al. Which metal represents the greatest risk to freshwater ecosystem in Bohai Region of China?[J]. Ecosystem Health and Sustainability, 2017, 3(2): e01260. doi: 10.1002/ehs2.1260 [36] ZHANG M, SHI Y J, LU Y L, et al. The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China[J]. Science of the Total Environment, 2017, 590/591: 633-642. doi: 10.1016/j.scitotenv.2017.03.011 [37] 苏超, 崔严. 长江流域淡水生态系统内分泌干扰物、药物和个人护理品的风险排序[J]. 环境科学, 2020, 41(11): 4981-4988. SU C, CUI Y. Risk ranking of endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of the Yangtze River Basin[J]. Environmental Science, 2020, 41(11): 4981-4988 (in Chinese).
[38] DONNACHIE R L, JOHNSON A C, MOECKEL C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK[J]. Environmental Pollution, 2014, 194: 17-23. doi: 10.1016/j.envpol.2014.07.008 [39] DU Y J, XU X, LIU Q Z, et al. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges[J]. Science of the Total Environment, 2022, 806: 150691. doi: 10.1016/j.scitotenv.2021.150691 [40] BLACKWELL B R, ANKLEY G T, CORSI S R, et al. An “EAR” on environmental surveillance and monitoring: A case study on the use of exposure-activity ratios (EARs) to prioritize sites, chemicals, and bioactivities of concern in great lakes waters[J]. Environmental Science & Technology, 2017, 51(15): 8713-8724. [41] MALONEY E M, VILLENEUVE D L, BLACKWELL B R, et al. A framework for prioritizing contaminants in retrospective ecological assessments: Application in the Milwaukee Estuary (Milwaukee, WI)[J]. Integrated Environmental Assessment and Management, 2023, 19(5): 1276-1296. doi: 10.1002/ieam.4725 [42] MARUYA K A, DODDER N G, MEHINTO A C, et al. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems[J]. Integrated Environmental Assessment and Management, 2016, 12(3): 540-547. doi: 10.1002/ieam.1702 [43] MEHINTO A C, DU B W, WENGER E, et al. Bioanalytical and non-targeted mass spectrometric screening for contaminants of emerging concern in Southern California bight sediments[J]. Chemosphere, 2023, 331: 138789. doi: 10.1016/j.chemosphere.2023.138789 [44] LI S B, VILLENEUVE D L, BERNINGER J P, et al. An integrated approach for identifying priority contaminant in the Great Lakes Basin–Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern[J]. Science of the Total Environment, 2017, 579: 825-837. doi: 10.1016/j.scitotenv.2016.11.021 [45] 曹婷, 刘铮, 王晓慧, 等. 基于多方法优化的行业优控污染物清单筛选技术研究及应用[J]. 环境工程技术学报, 2023, 13(2): 827-838. CAO T, LIU Z, WANG X H, et al. Research and application of screening technology of industrial priority control pollutants list based on multi-method optimization[J]. Journal of Environmental Engineering Technology, 2023, 13(2): 827-838 (in Chinese).
[46] KANG Y, CHEN Y Q, ZHOU M J, et al. Identification of regional industrial priority pollutants in surface water: A field study in Taihu Lake Basin[J]. Frontiers in Environmental Science, 2022, 10: 1077430. doi: 10.3389/fenvs.2022.1077430 [47] 刘婕, 丁震, 郑浩, 等. 基于我国南方城市的饮用水优先控制污染物筛选[J]. 环境与健康杂志, 2016, 33(4): 350-354. LIU J, DING Z, ZHENG H, et al. Screening of priority control contaminants in drinking water in southern city of China[J]. Journal of Environment and Health, 2016, 33(4): 350-354 (in Chinese).
[48] QIAO X C, LI X, QI T, et al. Identification of priority pollutants in groundwater: A case study in Xiong’an new region, China[J]. Water, 2023, 15(8): 1565. doi: 10.3390/w15081565 [49] ROGERS E R, ZALESNY R S, LIN C H. A systematic approach for prioritizing landfill pollutants based on toxicity: Applications and opportunities[J]. Journal of Environmental Management, 2021, 284: 112031. doi: 10.1016/j.jenvman.2021.112031 [50] 全燮, 孙英, 杨凤林, 等. 海域有机污染物优先排序和风险分类模糊评判系统[J]. 海洋环境科学, 1996, 15(1): 1-7. QUAN X, SUN Y, YANG F L, et al. Fuzzy system for assessment of the prior order and the risk classification of the marine organic pollutantsJ]. Marine Environmental Science, 1996, 15(1): 1-7 (in Chinese).
[51] 楼文高. 用密切值法进行海域有机污染物优先排序和风险分类研究[J]. 海洋环境科学, 2002, 21(3): 43-48. LOU W G. Application of osculating method for the prior order and risk classification for the marine organic pollutants[J]. Marine Environmental Science, 2002, 21(3): 43-48 (in Chinese).
[52] 全燮, 许建峰, 杨凤林, 等. 模糊混合聚类法对污染物优先排序及分类的探讨[J]. 大连理工大学学报, 1993, 33(4): 402-409. QUAN X, XU J F, YANG F L, et al. Determination of prior order and classification of pollutants with fuzzy mixed method[J]. Journal of Dalian University of Technology, 1993, 33(4): 402-409 (in Chinese).
[53] FRIEDERICHS M, FRÄNZLE O, SALSKI A. Fuzzy clustering of existing chemicals according to their ecotoxicological properties[J]. Ecological Modelling, 1996, 85(1): 27-40. doi: 10.1016/0304-3800(95)00009-7 [54] 孙伟. 层次分析法应用研究[J]. 市场研究, 2008(12): 35-39. SUN W. Research on the application of analytic hierarchy process[J]. Marketing Research, 2008(12): 35-39 (in Chinese).
[55] 朱菲菲, 秦普丰, 张娟, 等. 我国地下水环境优先控制有机污染物的筛选[J]. 环境工程技术学报, 2013, 3(5): 443-450. ZHU F F, QIN P F, ZHANG J, et al. Screening of priority organic pollutants in groundwater of China[J]. Journal of Environmental Engineering Technology, 2013, 3(5): 443-450 (in Chinese).
[56] 王莉, 王玉平, 卢迎红, 等. 辽河流域浑河沈阳段地表水重点控制有机污染物的筛选[J]. 中国环境监测, 2005, 21(6): 59-62. WANG L, WANG Y P, LU YING H, et al. The sifting of priority control organic pollutants in Hunhe River of Liaohe Basin in Shenyang city[J]. Environmental Monitoring In China, 2005, 21(6): 59-62 (in Chinese).
[57] 王立阳, 李斌, 李佳熹, 等. 沈阳市典型城市河流优先控制污染物筛选及生态环境风险评估[J]. 环境科学研究, 2019, 32(1): 25-34. WANG L Y, LI B, LI J X, et al. Priority pollutants and their ecological risk in typically urbanized river of Shenyang[J]. Research of Environmental Sciences, 2019, 32(1): 25-34 (in Chinese).
[58] 涂治, 周金龙, 孙英, 等. 新疆阿克苏地区地下水优先控制污染物的确定[J]. 安全与环境工程, 2022, 29(2): 151-159. TU Z, ZHOU J L, SUN Y, et al. Determination of priority control pollutants in groundwater of Aksu prefecture, Xinjiang[J]. Safety and Environmental Engineering, 2022, 29(2): 151-159 (in Chinese).
[59] 张洪凯, 李峰. 小清河沿岸地下水中有机污染物优先排序的研究[J]. 环境科学研究, 1998, 11(2): 40-44. ZHANG H K, LI F. Study on the prior order of the organic pollutants in undergroung water along[J]. Research of Environmental Sciences, 1998, 11(2): 40-44 (in Chinese).
[60] KUDŁAK B, TSAKOVSKI S, SIMEONOV V, et al. Ranking of ecotoxisity tests for underground water assessment using the Hasse diagram technique[J]. Chemosphere, 2014, 95: 17-23. doi: 10.1016/j.chemosphere.2013.05.049 [61] TSAKOVSKI S, ASTEL A, SIMEONOV V. Assessment of the water quality of a river catchment by chemometric expertise[J]. Journal of Chemometrics, 2010, 24(11/12): 694-702. [62] 刘存, 韩寒, 周雯, 等. 应用Hasse图解法筛选优先污染物[J]. 环境化学, 2003, 22(5): 499-502. LIU C, HAN H, ZHOU W, et al. Applying hasse diagrams to select priority pollutants[J]. Environmental Chemistry, 2003, 22(5): 499-502 (in Chinese).
[63] 唐军, 李娟, 席北斗, 等. 基于危害性分级的地下水污染源分类识别方法[J]. 环境工程技术学报, 2017, 7(6): 676-683. TANG J, LI J, XI B D, et al. Identification and classification methods of groundwater pollution sources based on hazard classification[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 676-683 (in Chinese).
[64] ROIG N, SIERRA J, ORTIZ J D, et al. Integrated study of metal behavior in Mediterranean stream ecosystems: A case-study[J]. Journal of Hazardous Materials, 2013, 263 Pt 1: 122-130. [65] 翟平阳, 刘玉萍, 倪艳芳, 等. 松花江水中优先污染物的筛选研究[J]. 北方环境, 2000, 25(3): 19-21. ZHAI P Y, LIU Y P, NI Y F, et al. Screening study of priority pollutants in Songhua River[J]. North Environment, 2000, 25(3): 19-21 (in Chinese).
[66] 郑庆子, 祝琳琳. 松花江吉林江段优先控制污染物筛选[J]. 环境科技, 2012, 25(4): 68-70. ZHENG Q Z, ZHU L L. The selection of the priority control contaminants in Jilin section of the Songhua River[J]. Environmental Science and Technology, 2012, 25(4): 68-70 (in Chinese).
[67] KUMAR A, XAGORARAKI I. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U. S. surface and finished drinking waters: A proposed ranking system[J]. Science of the Total Environment, 2010, 408(23): 5972-5989. doi: 10.1016/j.scitotenv.2010.08.048 [68] KUZMANOVIĆ M, GINEBREDA A, PETROVIĆ M, et al. Risk assessment based prioritization of 200 organic micropollutants in 4 Iberian Rivers[J]. Science of the Total Environment, 2015, 503/504: 289-299. doi: 10.1016/j.scitotenv.2014.06.056 [69] SMITAL T, TERZIĆ S, LONČAR J, et al. Prioritisation of organic contaminants in a river basin using chemical analyses and bioassays[J]. Environmental Science and Pollution Research, 2013, 20(3): 1384-1395. doi: 10.1007/s11356-012-1059-x [70] 杜士林. 沙颍河流域水环境优控污染物筛选及潜在生态风险评价研究[D]. 桂林: 桂林理工大学, 2020. DU S L. The research on screening of priority pollutants in the water environment and potential ecological risk assessment in Shaying River Basin[D]. Guilin: Guilin University of Technology, 2020 (in Chinese).
[71] 张晓孟, 李斌, 刘瑞霞, 等. 太子河水系印染行业重点污染河段优先控制污染物的确定[J]. 环境工程学报, 2015, 9(4): 2007-2013. ZHANG X M, LI B, LIU R X, et al. Identification of priority pollutants in river polluted by effluents from printing and dyeing enterprises in Taizihe Watershed[J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 2007-2013 (in Chinese).
[72] 石运刚, 蔡凤珊, 陈静华, 等. 基于高通量分析的长江干流重庆段重点关注污染物筛选[J]. 生态毒理学报, 2019, 14(2): 129-139. SHI Y G, CAI F S, CHEN J H, et al. Identifing priority pollutants in the Yangtze River in Chongqing city using high throughput screening approach[J]. Asian Journal of Ecotoxicology, 2019, 14(2): 129-139 (in Chinese).
[73] SLOBODNIK J, MRAFKOVA L, CARERE M, et al. Identification of river basin specific pollutants and derivation of environmental quality standards: A case study in the Slovak Republic[J]. TrAC Trends in Analytical Chemistry, 2012, 41: 133-145. doi: 10.1016/j.trac.2012.08.008 [74] 叶小华, 李铁松, 夏训峰, 等. 升金湖湿地生态系统服务价值评估[J]. 三峡环境与生态, 2009, 2(4): 1-4. YE X H, LI T S, XIA X F, et al. Evaluation of ecosystem services in Shengjin Lake wetland nature reserve[J]. Environment and Ecology in the Three Gorges, 2009, 2(4): 1-4 (in Chinese).
[75] GONG X H, XIONG L L, XING J S, et al. Implications on freshwater lake-river ecosystem protection suggested by organic micropollutant (OMP) priority list[J]. Journal of Hazardous Materials, 2024, 461: 132580. doi: 10.1016/j.jhazmat.2023.132580 [76] 龚雄虎, 丁琪琪, 金苗, 等. 升金湖水体优先污染物筛选与风险评价[J]. 环境科学, 2021, 42(10): 4727-4738. GONG X H, DING Q Q, JIN M, et al. Screening of priority pollutants and risk assessment for surface water from Shengjin Lake[J]. Environmental Science, 2021, 42(10): 4727-4738 (in Chinese).
[77] KHAIRY M A. Assessment of priority phenolic compounds in sediments from an extremely polluted coastal wetland (Lake Maryut, Egypt)[J]. Environmental Monitoring and Assessment, 2013, 185(1): 441-455. doi: 10.1007/s10661-012-2566-4 [78] ZHONG W J, WANG D H, XU X W, et al. Screening level ecological risk assessment for phenols in surface water of the Taihu Lake[J]. Chemosphere, 2010, 80(9): 998-1005. [79] 丁琪琪, 龚雄虎, 王兆德, 等. 基于多指标综合评分法筛选地表水环境优先污染物: 以湖北涨渡湖为例[J]. 湖泊科学, 2022, 34(1): 90-108. doi: 10.18307/2022.0109 DING Q Q, GONG X H, WANG Z D, et al. Aproposed multi-criteria scoring method for identifying priority pollutants in surface water: A case study of Lake Zhangdu, Hubei Province[J]. Journal of Lake Sciences, 2022, 34(1): 90-108 (in Chinese). doi: 10.18307/2022.0109
[80] ZHAO Z H, YAO X L, DING Q Q, et al. A comprehensive evaluation of organic micropollutants (OMPs) pollution and prioritization in equatorial lakes from mainland Tanzania, East Africa[J]. Water Research, 2022, 217: 118400. doi: 10.1016/j.watres.2022.118400 [81] HAN J, LIANG Y S, ZHAO B, et al. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis[J]. Environmental Pollution, 2019, 251: 312-327. doi: 10.1016/j.envpol.2019.05.022 [82] MITCHELL R R, SUMMER C L, BLONDE S A, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes - Resulting chemical scores and rankings[J]. Human and Ecological Risk Assessment, 2002, 8(3): 537-557. doi: 10.1080/10807030290879817 [83] HULL R N, KLEYWEGT S, SCHROEDER J. Risk-based screening of selected contaminants in the Great Lakes Basin[J]. Journal of Great Lakes Research, 2015, 41(1): 238-245. doi: 10.1016/j.jglr.2014.11.013 [84] 国家海洋局. 中国海洋环境质量公报[R]. 北京: 国家海洋局, 2007. State Oceanic Administration. The bulletin of marine environment quality of China[R]. Beijing: State Oceanic Administration, 2007 (in Chinese).
[85] 穆景利, 王菊英, 张志锋. 我国近岸海域优先控制有机污染物的筛选[J]. 海洋环境科学, 2011, 30(1): 114-117. MU J L, WANG J Y, ZHANG Z F. Screening of priority-control organic pollutants in coastal water in China[J]. Marine Environmental Science, 2011, 30(1): 114-117 (in Chinese).
[86] 朱韻洁, 朱晓艳, 林英姿, 等. 辽东湾优先控制污染物的筛选[J]. 环境工程技术学报, 2021, 11(3): 459-467. ZHU Y J, ZHU X Y, LIN Y Z, et al. Screening of priority pollutants in Liaodong Bay[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 459-467 (in Chinese).
[87] BARBOSA J, de SCHAMPHELAERE K, JANSSEN C, et al. Prioritization of contaminants and biological process targets in the North Sea using toxicity data from ToxCast[J]. Science of the Total Environment, 2021, 758: 144157. doi: 10.1016/j.scitotenv.2020.144157 [88] NEUPARTH T, MOREIRA S, SANTOS M M, et al. Hazardous and Noxious Substances (HNS) in the marine environment: Prioritizing HNS that pose major risk in a European context[J]. Marine Pollution Bulletin, 2011, 62(1): 21-28. doi: 10.1016/j.marpolbul.2010.09.016 [89] ZHAO C, ZHANG X G, FANG X, et al. Characterization of drinking groundwater quality in rural areas of Inner Mongolia and assessment of human health risks[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113360. doi: 10.1016/j.ecoenv.2022.113360 [90] RIEDEL T, KÜBECK C, QUIRIN M. Legacy nitrate and trace metal (Mn, Ni, As, Cd, U) pollution in anaerobic groundwater: Quantifying potential health risk from “the other nitrate problem”[J]. Applied Geochemistry, 2022, 139: 105254. doi: 10.1016/j.apgeochem.2022.105254 [91] 王耀锋, 何连生, 姜登岭, 等. 我国焦化场地多环芳烃和重金属分布情况及生态风险评价[J]. 环境科学, 2021, 42(12): 5938-5948. WANG Y F, HE L S, JIANG D L, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and heavy metals in coking sites in China[J]. Environmental Science, 2021, 42(12): 5938-5948 (in Chinese).
[92] 张鑫, 孟磊, 冯启言, 等. 典型焦化场地地下水优控污染物筛选[J]. 中国矿业, 2022, 31(8): 51-59. ZHANG X, MENG L, FENG Q Y, et al. Screening of groundwater priority pollutants in typical coking sites[J]. China Mining Magazine, 2022, 31(8): 51-59 (in Chinese).
[93] 张瑶, 苏春利, 高红霞, 等. 福泉市磷矿开采聚集区地下水优先控制污染物的筛选及健康风险评估[J]. 安全与环境工程, 2022, 29(5): 103-111. ZHANG Y, SU C L, GAO H X, et al. Determination of priority control pollutants and health risk assessment of groundwater in the phosphate mine centralized area in Fuquan city[J]. Safety and Environmental Engineering, 2022, 29(5): 103-111 (in Chinese).
[94] 范薇, 周金龙, 曾妍妍, 等. 石河子地区地下水优先控制污染物的确定[J]. 人民黄河, 2018, 40(4): 69-71,75. FAN W, ZHOU J L, ZENG Y Y, et al. Determination of priority control pollutants of groundwater in Shihezi Area[J]. Yellow River, 2018, 40(4): 69-71,75 (in Chinese).
[95] 赵鹏, 何江涛, 王曼丽, 等. 基于污染评价的地下水中优控污染物筛选[J]. 环境科学, 2018, 39(2): 800-810. ZHAO P, HE J T, WANG M L, et al. Screening method of priority control pollutants in groundwater based on contamination assessment[J]. Environmental Science, 2018, 39(2): 800-810 (in Chinese).
[96] 李沫蕊, 王韦舒, 任姝娟, 等. 运用改进综合评分法筛选典型污染物的研究: 以大武水源地地下水典型污染物筛选为例[J]. 环境污染与防治, 2014, 36(11): 72-77. LI M R, WANG W S, REN S J, et al. Screening typical pollutants by modified comprehensive evaluation method—a case study of typical pollutants screeningin groundwater of Dawu water source[J]. Environmental Pollution & Control, 2014, 36(11): 72-77 (in Chinese).
[97] 李沫蕊, 王亚飞, 王金生, 等. 下辽河平原区域地下水典型污染物的筛选[J]. 中国环境监测, 2015, 31(3): 62-69. LI M R, WANG Y F, WANG J S, et al. Application of modified potential damage index method to screening of the typical pollutants in groundwater of the Liao River Basin[J]. Environmental Monitoring in China, 2015, 31(3): 62-69 (in Chinese).
[98] KNOX R C, CANTER L W. Prioritization of ground water contaminants and sources[J]. Water, Air, and Soil Pollution, 1996, 88(3): 205-226. [99] ESTÉVEZ E, del CARMEN CABRERA M, MOLINA-DÍAZ A, et al. Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain)[J]. Science of the Total Environment, 2012, 433: 538-546. doi: 10.1016/j.scitotenv.2012.06.031 [100] CHOWDHURY A K M M. Expert system for prioritization of contaminant sources in wellhead protection areas[D]. Oklahoma: University of Oklahoma, 1995. [101] WU X Y, REN J Z, XU Q, et al. Priority screening of contaminant of emerging concern (CECs) in surface water from drinking water sources in the lower reaches of the Yangtze River based on exposure-activity ratios (EARs)[J]. Science of the Total Environment, 2023, 856: 159016. doi: 10.1016/j.scitotenv.2022.159016 [102] MA S J, DONG H Y, LI D, et al. Priority screening of contaminants of emerging concern in drinking water sources of Eastern China: Assessing risks based on exposure-activity ratios (EARs)[J]. Science of the Total Environment, 2023, 893: 164881. doi: 10.1016/j.scitotenv.2023.164881 [103] 徐青. 饮用水源地优先控制污染物筛选研究[D]. 扬州: 扬州大学, 2015. XU Q. Research on screening of priority pollutants of the potable water sources[D]. Yangzhou: Yangzhou University, 2015 (in Chinese).
[104] SINCLAIR C J, BOXALL A B A, PARSONS S A, et al. Prioritization of pesticide environmental transformation products in drinking water supplies[J]. Environmental Science & Technology, 2006, 40(23): 7283-7289. [105] von der OHE P C, DULIO V, SLOBODNIK J, et al. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive[J]. Science of the Total Environment, 2011, 409(11): 2064-2077. doi: 10.1016/j.scitotenv.2011.01.054