-
铬(chromium, Cr)是水中典型的重金属污染物,主要来源于造纸、制革、冶金和染料等行业的废水排放[1]。铬在水体中以三价、四价和六价存在,Cr(Ⅲ)和Cr(Ⅵ)最稳定[2],Cr(Ⅵ)对生物的毒性是Cr(Ⅲ)的100~1 000倍[3],可诱发多种致癌性、诱变性疾病,如慢性溃疡、肝脏炎症、肾损伤、肺癌等[4]。因此,高效地去除水中的Cr(Ⅵ)是至关重要的。由于Cr(Ⅵ)具有极高的氧化性,通常将高毒性的Cr(Ⅵ)还原为低毒性的Cr(Ⅲ),作为Cr(Ⅵ)的有效去除方法[5]。
纳米零价铁(nano-zero-valent iron, nZVI)具有大的比表面积、丰富的活性位点、高的反应性和环境友好性[6],在去除水溶液中污染物方面具有很好的应用前景。但是,其易团聚、易钝化和迁移性差等缺陷使得单一的nZVI系统已经不能满足当今废水处理的实际需求[7]。复合型nZVI成为了近几年研究的热点。负载型、表面修饰型、硫化型和双金属型是常用的复合型nZVI技术。QIAN等[8]使用红麻棒、铁盐和绿茶提取物制备多孔生物炭,并制备了多孔生物炭负载的纳米零价铁(biochar loaded nano-zero-valent iron, BC-nZVI)。HE等[9]采用羧甲基纤维素(carboxymethyl cellulose, CMC)作为稳定剂,对nZVI进行了分散研究。LI等[10]采用球磨、真空化学气相沉积(vacuum chemical vapor deposition, CVD)和液相还原法制备出硫化纳米零价铁(sulfurized nano-zero-valent iron, S-nZVI)。HE,ZHAO[11]采用水溶性淀粉作为稳定剂,制备了淀粉稳定的nZVI粒子和Fe-Pd双金属纳米粒子。复合型nZVI对重金属、有机物和放射性核素等方面的有着良好的去除效果。
黄铁矿是自然界中常见的金属矿物,主要成分是FeS2,在尾矿中含量很大,尾矿中的黄铁矿会对周围环境形成污染[12]。但黄铁矿具有价格低和良好的电化学性质等特点。因此,黄铁矿的有效利用在环境治理方面具有广泛的研究前景。天然的黄铁矿S和Fe之间以共价键结合,具有良好的稳定性,反应活性较低[13]。使用机械活化可以将黄铁矿制备成微纳米级粉末,降低黄铁矿粒径,增加其晶格畸变率[14],使黄铁矿粒子表面的悬空未配位键和点缺陷等增多[15-16]。有研究[17]表明,使用天然黄铁矿和铁粉进行球磨,通过黄铁矿和铁粉的协同作用对Cr(Ⅵ)产生了良好的去除效果,但由于黄铁矿和铁粉活性较差、反应较慢,对于Cr(Ⅵ)含量高废水,需要消耗大量材料[18]。而化学合成的nZVI具有极强的反应活性,更容易和机械活化的黄铁矿产生协同作用。并且通过黄铁矿的负载可以减轻nZVI的团聚,从而提升nZVI对Cr(Ⅵ)的去除效果。除此之外,还可以对黄铁矿进行有效利用,同时减少硼氢化钠(NaBH4)的使用量,节约成本。基于此,本文利用乙醇作为介质,通过优化球料比、磨球数量和磨球大小比例,采用机械活化的方式,制备了微纳米级天然黄铁矿,以此作为载体材料,通过液相还原法制备了微纳米级天然黄铁矿负载nZVI(pyrite loaded nano-zero-valent iron, nZVI/黄铁矿),用于去除水体中的Cr(Ⅵ)。并通过动力学、等温线模型和热力学分析对Cr(Ⅵ)去除机理进行了探讨。
微纳米级天然黄铁矿负载nZVI去除水中Cr(Ⅵ)
Removal of Cr (VI) from water by micro-nano-scale natural pyrite loaded nZVI
-
摘要: 采用机械活化(球磨)的方式,制备了微纳米级天然黄铁矿。同时以此作为载体材料,通过液相还原法制备了微纳米级天然黄铁矿负载纳米零价铁(nZVI/黄铁矿)去除水中的Cr(VI)。分析了nZVI/黄铁矿中黄铁矿和nZVI的质量比、反应初始pH对Cr(Ⅵ)去除效果的影响,并结合动力学、吸附等温线和热力学的拟合结果,对反应机理进行了探讨。结果表明,在nZVI/黄铁矿去除Cr(Ⅵ)的实验中,黄铁矿和nZVI的最佳质量比为1:2,且黄铁矿的负载加强了nZVI在酸性和碱性条件下对Cr(Ⅵ)去除能力。除此之外,nZVI/黄铁矿和nZVI对Cr(Ⅵ)去除过程均符合准二级动力学模型和Freundlich等温吸附曲线,吸附过程由物理吸附和化学吸附共同控制,为极易发生的多层吸附。反应体系中ΔG<0、ΔH>0、ΔS>0,为熵增吸热反应,可以自发进行。nZVI/黄铁矿对Cr(Ⅵ)具有更好的吸附性能和还原固定效果,反应更容易进行。以上研究结果可为天然黄铁矿和零价铁协同处理重金属的实际应用提供技术支持。Abstract: In order to remove Cr(VI) from water, micro-nano-scale natural pyrite was prepared by mechanical activation (ball milling). At the same time, as a carrier material, micro-nano-scale natural pyrite loaded nano-zero-valent iron (nZVI/pyrite) was prepared by a liquid phase reduction method. The effects of the mass ratio of pyrite to nZVI in nZVI/pyrite and the initial pH of the reaction on the removal of Cr(VI) were analyzed. The reaction mechanism was discussed based on the fitting results of kinetics, adsorption isotherms and thermodynamics. The results show that in the experiment of Cr(VI) removal by nZVI/pyrite, the optimal mass ratio of pyrite to nZVI was 1:2, and the loading of pyrite enhanced the Cr(VI) removal ability of nZVI under acidic and alkaline conditions. In addition, the removal process of Cr(VI) by nZVI/pyrite and nZVI conformed to the pseudo-second-order kinetic model and Freundlich isothermal adsorption curve. The adsorption process was controlled by physical and chemical adsorption, and was a very easily occurred multi-layer adsorption. In the reaction system, ΔG < 0, ΔH > 0, ΔS > 0, which was an entropy increase endothermic reaction and could happened spontaneously. Moreover, nZVI/pyrite had a better adsorption performance and reduction fixation effect on Cr(VI), and the reaction was easier to happen than nZVI alone. The research results can provide a theoretical basis and technical support for the practical application of natural pyrite and nano-zero-valent iron in the synergistic treatment of heavy metals.
-
Key words:
- nano-zero-valent iron /
- natural pyrite /
- chromium /
- mechanical activation
-
表 1 天然黄铁矿的元素分析
Table 1. Elements analysis of natural pyrite
元素 质量占比/% 质量占比误差/% 原子占比/% 原子占比误差/% S 53.36 ±0.75 66.53 ±0.89 Ca 0.27 ±0.16 0.29 ±0.15 Fe 46.37 ±0.89 33.18 ±0.60 表 2 不同初始质量浓度下nZVI/黄铁矿和nZVI对Cr(VI)的吸附动力学参数
Table 2. Adsorption kinetic parameters of nZVI/pyrite and nZVI to Cr(VI) at different initial mass concentrations
材料 c0/(mg·L−1) 准一级动力学 准二级动力学 k1/(min−1) qe/(mg·g−1) R2 k2/(g·(mg∙min)−1) qe/(mg·g−1) R2 nZVI/黄铁矿 70 0.042 87 170.114 0.96 0.000 39 180.673 0.99 80 0.029 69 177.949 0.96 0.000 22 193.522 0.99 90 0.023 54 182.501 0.96 0.000 16 200.588 0.99 100 0.022 89 182.593 0.95 0.000 15 201.090 0.98 110 0.022 82 185.211 0.94 0.000 14 205.297 0.98 nZVI 70 0.044 46 139.088 0.95 0.000 48 148.170 0.99 80 0.025 74 144.170 0.95 0.000 22 158.760 0.99 90 0.022 48 160.690 0.97 0.000 18 176.352 0.99 100 0.012 48 159.316 0.93 0.000 08 182.419 0.97 110 0.010 57 167.112 0.95 0.000 06 194.791 0.98 表 3 不同温度下nZVI/黄铁矿和nZVI对Cr(VI)的吸附动力学参数
Table 3. Adsorption kinetics parameters of nZVI/pyrite and nZVI for Cr(VI) at different temperatures
材料 温度/ ℃ 准一级动力学 准二级动力学 k1/(min−1) qe/(mg·g−1) R2 k2/( g·(mg∙min)−1) qe/(mg·g−1) R2 nZVI/黄铁矿 25 0.029 69 177.949 0.96 0.000 22 193.522 0.99 35 0.037 98 182.560 0.96 0.000 28 196.636 0.99 45 0.038 07 185.723 0.93 0.000 29 199.543 0.98 nZVI 25 0.025 74 144.170 0.95 0.000 22 158.760 0.99 35 0.028 53 156.597 0.96 0.000 23 171.621 0.99 45 0.033 65 171.351 0.97 0.000 25 186.333 0.99 表 4 Langmuir和Freundlich吸附等温线拟合参数
Table 4. Langmuir and Freundlich adsorption isotherm fitting parameters
材料 温度/ ℃ Langmuir Freundlich KL/(L·mg−1) qmax/(mg·g−1) R2 KF/(mg·g−1(mg·L−1)−1/n) 1/n R2 nZVI/黄铁矿 25 79.160 0 201.099 0.84 187.394 0.028 58 0.99 35 98.416 3 212.737 0.76 196.441 0.040 19 0.99 45 252.956 227.934 0.75 217.623 0.045 87 0.99 nZVI 25 0.252 15 206.006 0.99 100.342 0.175 19 0.99 35 0.589 78 207.936 0.96 131.043 0.124 58 0.98 45 2.472 81 204.977 0.90 164.061 0.070 30 0.97 表 5 nZVI/黄铁矿和nZVI去除Cr(Ⅵ)的热力学拟合参数
Table 5. Thermodynamic fitting parameters for the removal of Cr(Ⅵ) by nZVI/pyrite and nZVI
材料 温度/K ΔH/(kJ·mol−1) ΔS/(kJ·(mol·K)−1) ΔG/(kJ·mol−1) nZVI/黄铁矿 298.15 5.87 0.06 −12.95 308.15 −13.58 318.15 −14.21 nZVI 298.15 19.40 0.10 −10.42 308.15 −11.42 318.15 −12.42 -
[1] LIU B, XIN Y N, ZOU J, et al. Removal of chromium species by adsorption: fundamental principles, newly developed adsorbents and future perspectives[J]. Molecules, 2023, 28(2): 639. doi: 10.3390/molecules28020639 [2] EHSANPOUR S, SAMANI M R, TOGHRAIE D. Removal of chromium (VI) from aqueous solution using eggshell/poly pyrrole composite[J]. Alexandria Engineering Journal, 2023, 64: 581-589. doi: 10.1016/j.aej.2022.09.018 [3] YANG X, LIU L H, ZHANG M Z, et al. Improved removal capacity of magnetite for Cr(VI) by electrochemical reduction[J]. Journal of Hazardous Materials, 2019, 374: 26-34. doi: 10.1016/j.jhazmat.2019.04.008 [4] BULIN C, LI B, ZHANG Y, et al. Removal performance and mechanism of nano α-Fe2O3/graphene oxide on aqueous Cr(Ⅵ)[J]. Journal of Physics and Chemistry of Solids, 2020, 147: 109659. doi: 10.1016/j.jpcs.2020.109659 [5] QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation [J]. Environmental Pollution, 2020, 265(Pt B): 115018. [6] TANG H, WANG J, ZHANG S, et al. Recent advances in nanoscale zero-valent iron-based materials: characteristics, environmental remediation and challenges[J]. Journal of Cleaner Production, 2021, 319: 128641. doi: 10.1016/j.jclepro.2021.128641 [7] WANG P, FU F, LIU T. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: emergence, preparation, optimization and mechanism[J]. Chemosphere, 2021, 285: 131435. doi: 10.1016/j.chemosphere.2021.131435 [8] QIAN W, LIANG J Y, ZHANG W X, et al. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of environmental sciences, 2021, 113: 231-241. [9] HE F, ZHAO D Y. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17): 6216-6221. [10] LI L, JIN HW, LUO N, et al. Sulfurized nano zero-valent iron prepared via different methods: effect of stability and types of surface corrosion products on removal of 2, 4, 6-trichlorophenol[J]. Ecotoxicology and Environmental Safety, 2023, 256: 114864. doi: 10.1016/j.ecoenv.2023.114864 [11] HE F, ZHAO D Y. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39(9): 3314-3320. [12] JEFFERSON M, YENIAL-ARSLAN U, EVANS C, et al. Effect of pyrite textures and composition on flotation performance: A review[J]. Minerals Engineering, 2023, 201: 108234. doi: 10.1016/j.mineng.2023.108234 [13] 丁峰. 微纳米级天然黄铁矿还原固定水中铼的研究[D]. 太原: 太原科技大学, 2015. [14] 丁庆伟, 秦莹莹, 罗学强. 纳米天然黄铁矿对土壤和地下水中铬的原位固定技术[J]. 环境工程学报, 2020, 14(9): 2568-2575. [15] 丁峰, 钱天伟, 丁庆伟, 等. 不同pH下纳米级天然黄铁矿对水中ReO4−的去除规律[J]. 环境工程学报, 2016, 10(1): 55-59. doi: 10.12030/j.cjee.20160109 [16] 崔晋艳, 钱天伟, 丁庆伟, 等. 纳米级天然黄铁矿去除水中Cr6+, Cd2+和Pb2+[J]. 环境工程学报, 2016, 10(12): 7103-7108. doi: 10.12030/j.cjee.201507166 [17] HE X Y, MIN X B, PENG T Y, et al. Mechanochemically activated microsized zero-valent iron/pyrite composite for effective hexavalent chromium sequestration in aqueous solution[J]. Journal of chemical and engineering data, 2020, 65(4): 1936-1945. doi: 10.1021/acs.jced.9b01110 [18] ZHANG R M, NAPOLANO R, XI B D, et al. Mechanistic insights into Cr(VI) removal by a combination of zero-valent iron and pyrite[J]. Chemosphere, 2023, 330: 138693. doi: 10.1016/j.chemosphere.2023.138693 [19] KHAN M, ALI F, RAMZAN S, et al. N-phenyl acrylamide-incorporated porous silica-bound graphene oxide sheets with excellent removal capacity for Cr(iii) and Cr(vi) from wastewater[J]. RSC Advances, 2023, 13(24): 16047-16066. doi: 10.1039/D3RA02568C [20] YANG J, YU M, QIU T. Adsorption thermodynamics and kinetics of Cr(VI) on KIP210 resin[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(2): 480-486. [21] 姜传东, 黄玮, 丛玉凤, 等. 载铜活性炭吸附二甲基硫醚的热力学和动力学[J]. 石油炼制与化工, 2021, 52(8): 64-70. doi: 10.3969/j.issn.1005-2399.2021.08.015 [22] 马芳, 白妙妍, 毛仁俊, 等. 茶树枝叶制备生物炭负载纳米零价铁净化水中Cr(Ⅵ)[J]. 农业工程学报, 2023, 39(11): 212-219.