-
四环素(tetracycline,TC)作为常用的广谱抗生素之一,被大量广泛应用于医药、水产养殖以及畜牧业等行业中。而以生化技术为主的传统污水处理工艺无法将其有效去除,致使其大量进入天然水体。目前,在地表水、地下水甚至饮用水等水体中均可检测到四环素,即使在微量水平上,四环素类抗生素也对生态系统和人类健康造成极大的威胁[1]。近来,基于过硫酸盐的高级氧化技术在去除水中抗生素方面表现出色。通过对过一硫酸盐(peroxymonosulfate,PMS)或过二硫酸盐(peroxydisulfate,PDS)进行活化,可原位产生强氧化性的硫酸根自由基等活性物质对污染物进行氧化分解甚至矿化[2]。其中,碳基催化剂在活化PMS去除废水中抗生素方面引起广泛关注[3]。特别是,氮改性碳材料在活化PMS方面展现出优异的性能,通过在碳材料结构中引入氮原子,可改变碳材料局部的电子浓度分布及配位结构,有利其对PMS的吸附与活化,从而表现出较高的催化活性[4-6]。如WANG等[4]利用壳聚糖作为氮源和碳源,通过先水热碳化再热解的方法制备了氮掺杂碳球,发现该碳材料具备较好的活化PMS产SO4·−能力,可高效去除水中多种污染物。另外,QU等[6]以三聚氰胺为氮源,以L-谷氨酸为碳源,通过高温热解制备了氮掺杂碳纳米片,该催化剂可活化PMS产生1O2和·O2−进而实现对BPA的去除。因此,开发具有活化PMS性能的新型氮掺杂碳材料至关重要。
塑料污染是世界范围内的一个重大环境问题[7]。其中,聚氯乙烯(polyvinyl chloride,PVC)作为世界第三大通用塑料,每年产量约4 000×104 t,仅次于聚乙烯和聚丙烯,且50%以上产自中国[8]。得益于塑料分子内高的碳含量,研究人员以废弃塑料作为碳源,制备了多种高附加值的碳材料[9],如石墨烯、碳纳米管和碳纳米片等,并将其应用于吸附[10-11]、催化和传感等领域[12]。MA等[8]利用低温好氧处理将PVC脱氯后,进一步裂解成碳纳米管,为废塑料再利用开发了新思路。YANG等[13]利用水热法对PVC进行脱氯回收,并利用KOH活化的方法制备了高效捕集CO2的微孔碳材料。近来,将废弃塑料转变为具有活化PMS能力的碳纳米材料,并将其应用于去除废水中难降解污染物的研究备受关注。如MIAO等[14]利用废弃旧丙烯粉末通过一锅热解法合成了氮掺杂碳纳米管,通过活化PMS的方式在高盐的环境中实现了对磺胺甲恶唑的有效降解。REN等[15]开发了一种基于盐模板的碳化方法,将高密度聚乙烯催化转化成碳材料活化PMS实现了苯酚的高效降解。最近WEI等[16]发现将三聚氰胺与PVC在室温下研磨,再经热处理后可制备出具有较好催化活性的氮改性碳催化剂。与PVC直接进行热处理过程中常伴有含氯的有机有毒污染物不同,该方法可在常温条件下先进行脱氯反应,从而避免后续热处理过程中有毒物质的产生。该方法是一种温和环保的将废弃PVC转变为高值碳纳米材料的方法,而所制备的氮掺杂碳材料对PMS的活化及对污染物的去除性能值得期待。
鉴于此,本研究以废弃聚氯乙烯塑料为碳源,三聚氰胺为氮源,采用隔氧高温热处理方法制备了氮掺杂的碳纳米片,并将其应用于活化PMS以去除水中四环素。系统地考察了催化剂的制备、催化反应条件及影响因素。此外,推测了该材料催化活化PMS去除四环素的反应机理。
废弃聚氯乙烯塑料衍生的氮掺杂碳纳米片活化过一硫酸盐去除水中四环素
Nitrogen doped carbon nanosheet derived from waste PVC plastic activated peroxymonosulfate for tetracycline removal
-
摘要: 本研究分别以废弃聚氯乙烯塑料和三聚氰胺作为碳源和氮源,采用高温热处理方法制备了氮掺杂薄层纳米碳片材料,并对其活化过一硫酸盐(PMS)去除水中抗生素四环素(TC)的性能进行研究。考察了PMS浓度、催化剂投加量、pH及不同离子对TC去除的影响。多种物化表征结果表明,所制备材料为薄层纳米片结构且主要由碳、氮和氧元素组成。降解实验结果表明,该催化剂具有较优的活化过一硫酸盐(PMS)去除TC的性能。在投加PMS浓度为1 mmol·L−1、催化剂投加量为0.1 g·L−1条件下,催化剂去除TC活性最佳,反应30 min后,TC的去除率达到98%。自由基捕获实验和电子自旋共振测试结果表明,该催化剂活化PMS降解TC过程中,起主导作用的为单线态氧、超氧自由基。重复性实验结果表明该催化剂具备较好的稳定性。本研究可为新型高效活化PMS碳基催化体系的开发及其在环境污染控制领域的应用提供参考。Abstract: In this work, nitrogen doped carbon nanosheet catalyst was synthesized via a thermal treatment method by employing waste polyvinyl chloride (PVC) plastic as carbon source and melamine as nitrogen source. The performance of tetracycline (TC) removal from water by the catalyst activated peroxymonosulfate (PMS) was evaluated. The effects of the operational parameters including PMS concentration, catalyst dosage, pH and different inorganic ions on TC degradation were studied. The results of various characterizations revealed that the prepared catalyst had a thin nanosheet structure and consisted of carbon, nitrogen and oxygen elements. Moreover, the catalyst displayed an excellent PMS activation ability for TC degradation. The optimum TC removal happened at the catalyst dosage of 0.1 g·L−1 and PMS content of 1 mmol·L−1, 98% of TC could be removed after 30 min reaction. As confirmed by results of the radical trapping experiments and EPR tests, the formed singlet oxygen and superoxide radicals played a vital role during TC degradation by catalyst/PMS. The result of cycling tests revealed that the catalyst had a relatively robust stability. This work paves the way for the rational design of a novel carbon-based catalytic system with high-efficiency PMS activation and application in the field of environmental pollution control.
-
Key words:
- peroxymonosulfate /
- nitrogen doped carbon /
- PVC /
- tetracycline
-
-
[1] LEICHTWEIS J, VIEIRA Y, WELTER N, et al. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic[J]. Process Safety and Environmental Protection, 2022, 160: 25-40. doi: 10.1016/j.psep.2022.01.085 [2] LIN D, FU Y, LI X, et al. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review[J]. Journal of Hazardous Materials, 2022, 440: 129722. doi: 10.1016/j.jhazmat.2022.129722 [3] GAO Y, LI T, ZHU Y, et al. Highly nitrogen-doped porous carbon transformed from graphitic carbon nitride for efficient metal-free catalysis[J]. Journal of Hazardous Materials. 2020, 393: 121280. [4] WANG G, LIU Y, DONG X, et al. Transforming radical to non-radical pathway in peroxymonosulfate activation on nitrogen doped carbon sphere for enhanced removal of organic pollutants: Combined effect of nitrogen species and carbon structure[J]. Journal of Hazardous Materials, 2022, 437: 129357. doi: 10.1016/j.jhazmat.2022.129357 [5] KHAN A, GOEPEL M, COLMENARES J C, et al. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications[J]. ACS Sustainable Chemistry Engineering, 2020, 8: 4708-4727. doi: 10.1021/acssuschemeng.9b07522 [6] QU G, JIA P, TANG S, et al. Enhanced peroxymonosulfate activation via heteroatomic doping defects of pyridinic and pyrrolic N in 2D N-doped carbon nanosheets for BPA degradation[J]. Journal of Hazardous Materials, 2024, 461: 132626. doi: 10.1016/j.jhazmat.2023.132626 [7] HU S, JOHNSON D M, JIANG M, et al. The effect of polyvinyl chloride (PVC) color on biofilm development and biofilm-heavy metal chemodynamics in the aquatic environment[J]. Science of the Total Environment, 2023, 905: 166924. doi: 10.1016/j.scitotenv.2023.166924 [8] MA W, ZHU Y, CAI N, et al. Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC[J]. Waste Management, 2023, 169: 62-69. doi: 10.1016/j.wasman.2023.06.034 [9] SILVA D E P, FRAGAL V H, FRAGAL E H, et al. Sustainable energy and waste management: How to transform plastic waste into carbon nanostructures for electrochemical supercapacitors[J]. Waste Management, 2023, 171: 71-85. doi: 10.1016/j.wasman.2023.08.028 [10] LUO H, FU H, YIN H, et al. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites[J]. Journal of Hazardous Materials, 2022, 426: 128044. doi: 10.1016/j.jhazmat.2021.128044 [11] YAO N, WANG X, YANG Z, et al. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water[J]. Journal of Hazardous Materials, 2023, 456: 131687. doi: 10.1016/j.jhazmat.2023.131687 [12] WANG W, CAO Y, HU X, et al. Granular reduced graphene oxide/Fe3O4 hydrogel for efficient adsorption and catalytic oxidation of p-perfluorous nonenoxybenzene sulfonate[J]. Journal of Hazardous Materials, 2020, 386: 121662. doi: 10.1016/j.jhazmat.2019.121662 [13] YANG F M, LIU X, LI M B, et al. Polyvinyl chloride (PVC) derived microporous carbons prepared via hydrothermal dechlorination and potassium hydroxide activation for efficient CO2 capture[J]. Renewable and Sustainable Energy Reviews, 2023, 180: 113279. doi: 10.1016/j.rser.2023.113279 [14] MIAO J, ZHU Y, WEI Y, et al. Plastic wastes-derived N-doped carbon nanotubes for efficient removal of sulfamethoxazole in high salinity wastewater via nonradical peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2024, 465: 133344. doi: 10.1016/j.jhazmat.2023.133344 [15] REN S, XU X, ZHU Z S, et al. Catalytic transformation of microplastics to functional carbon for catalytic peroxymonosulfate activation: Conversion mechanism and defect of scavenging[J]. Applied Catalysis B:Environmental, 2024, 342: 123410. doi: 10.1016/j.apcatb.2023.123410 [16] WEI S, QIU Y, SUN X, et al. Sustainable nanoporous carbon catalysts derived from melamine assisted cross-linking of poly (vinyl chloride) waste for acetylene hydrochlorination[J]. ACS Sustainable Chemistry Engineering, 2022, 10: 10476-10485. doi: 10.1021/acssuschemeng.2c01183 [17] 罗宝坚. 氮掺杂及硼氮共掺杂碳材料活化过硫酸盐降解四环素研究[D]. 广州: 广州大学, 2023. [18] ZHAO C, MENG L, CHU H, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: Singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B:Environmental, 2023, 321: 122034. doi: 10.1016/j.apcatb.2022.122034 [19] CHENG D, WANG Z, CHEN C, et al. Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn-Air battery[J]. Carbon, 2019, 145: 38-46. doi: 10.1016/j.carbon.2019.01.010 [20] QI M Y, ZHANG Y, LI Q, et al. Experimental and theoretical insights into metal-free catalytic reduction of nitrophenols over porous nitrogen-doped reduced graphene oxide[J]. Chemical Engineering Journal, 2023, 474: 145823. doi: 10.1016/j.cej.2023.145823 [21] TIAN H, CUI K, SUN S, et al. Sequential doping of exogenous iron and nitrogen to prepare Fe-N structured biochar to enhance the activity of OTC degradation[J]. Separation and Purification Technology, 2023, 322: 124249. doi: 10.1016/j.seppur.2023.124249 [22] GENG G, GAO Y, ZHANG Z, et al. Renewable and robust biomass waste-derived Co-doped carbon aerogels for PMS activation: Catalytic mechanisms and phytotoxicity assessment[J]. Ecotoxicology and Environmental Safety, 2021, 220: 112381. doi: 10.1016/j.ecoenv.2021.112381 [23] MA H, XU S, ZHANG X, et al. N-doped coal-based carbon membrane coupling peroxymonosulfate activation for bisphenol A degradation: The role of micro-carbon structure and nitrogen species[J]. Journal of Cleaner Production, 2023, 423: 138713. doi: 10.1016/j.jclepro.2023.138713 [24] NI T, ZHANG H, YANG Z, et al. Enhanced adsorption and catalytic degradation of antibiotics by porous 0D/3D Co3O4/g-C3N4 activated peroxymonosulfate: An experimental and mechanistic study[J]. Journal of Colloid and Interface Science, 2022, 625: 466-478. doi: 10.1016/j.jcis.2022.06.057 [25] YIN C, LIU Y, KANG X, et al. Synergistic degradation of tetracycline by CDs decorated g-C3N4 under LED light irradiation combined with the persulfate-based advanced oxidation process[J]. Applied Catalysis A:General, 2022, 636: 118571. doi: 10.1016/j.apcata.2022.118571 [26] ZOU H, LIU Y, NI L, et al. Enhanced degradation of tetracycline via visible-light-assisted peroxymonosulfate activation over oxygen vacancy rich Fe2O3-CoFe2O4 heterostructures[J]. Separation and Purification Technology, 2023, 314: 123586. doi: 10.1016/j.seppur.2023.123586 [27] YU Y, CHEN D, XU W, et al. Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C3N4/calcined-LDH and its application in synthetic mariculture wastewater[J]. Journal of Hazardous Materials, 2021, 416: 126183. doi: 10.1016/j.jhazmat.2021.126183 [28] ZHANG C, QIN D, ZHOU Y, et al. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution[J]. Applied Catalysis B:Environmental, 2022, 303: 120904. doi: 10.1016/j.apcatb.2021.120904 [29] ZHUO S N, SUN H, WANG Z Y, et al. A magnetic biochar catalyst with dual active sites of Fe3C and Fe4N derived from floc: The activation mechanism for persulfate on degrading organic pollutant[J]. Chemical Engineering Journal, 2023, 455: 140702. doi: 10.1016/j.cej.2022.140702 [30] LIU M, NING Y, REN M, et al. Internal electric field-modulated charge migration behavior in MoS2 /MIL‐53(Fe) S‐scheme heterojunction for boosting visible‐light‐driven photocatalytic chlorinated antibiotics degradation[J]. Small, 2023, 19: 2303876. doi: 10.1002/smll.202303876 [31] LI K, MA S L, XU S J, et al. The mechanism changes during bisphenol A degradation in three iron functionalized biochar/peroxymonosulfate systems: The crucial roles of iron contents and graphitized carbon layers[J]. Journal of Hazardous Materials, 2021, 404: 124145. doi: 10.1016/j.jhazmat.2020.124145 [32] LI J, NI Z B, GAO Q Z, et al. Core-shell structured cobalt–nickel bimetallic sulfide with dual redox cycles to activate peroxymonosulfate for glyphosate removal[J]. Chemical Engineering Journal, 2023, 453: 139972. doi: 10.1016/j.cej.2022.139972 [33] WANG L D, WANG Y N, WANG Z X, et al. Proton transfer triggered in-situ construction of C=N active site to activate PMS for efficient autocatalytic degradation of low-carbon fatty amine[J]. Water Research, 2023, 240: 120119. doi: 10.1016/j.watres.2023.120119 [34] WU D, SONG W Y, CHEN L L, et al. High-performance porous graphene from synergetic nitrogen doping and physical activation for advanced nonradical oxidation[J]. Journal of Hazardous Materials, 2020, 381: 121010. doi: 10.1016/j.jhazmat.2019.121010 [35] LAN J H, ZHANG Q, YANG G X, et al. Removal of tetracycline hydrochloride by N, P co-doped carbon encapsulated Fe2P activating PMS: A non-radical pathway dominated by singlet oxygen[J]. Journal of Environmental Chemical Engineering, 2023, 11: 110481. doi: 10.1016/j.jece.2023.110481 [36] 张朋朋, 氮掺杂碳材料活化过硫酸盐降解水中酚类有机污染物[D]. 长春: 吉林大学, 2019. [37] XIE J L, PAN X F, JIANG C M, et al. Enhanced conversion of superoxide radical to singlet oxygen in peroxymonosulfate activation by metal-organic frameworks derived heteroatoms dual-doped porous carbon catalyst[J]. Environmental Research, 2023, 236: 116745. doi: 10.1016/j.envres.2023.116745