有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化

谭丰佚, 刘新颖, 党岩, 李继云, 徐康宁. 有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化[J]. 环境工程学报, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127
引用本文: 谭丰佚, 刘新颖, 党岩, 李继云, 徐康宁. 有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化[J]. 环境工程学报, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127
TAN Fengyi, LIU Xinying, DANG Yan, LI Jiyun, XU Kangning. Effect of organic carbon on the biological nitrogen removal through heterotrophic nitrification-aerobic denitrification and its optimization[J]. Chinese Journal of Environmental Engineering, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127
Citation: TAN Fengyi, LIU Xinying, DANG Yan, LI Jiyun, XU Kangning. Effect of organic carbon on the biological nitrogen removal through heterotrophic nitrification-aerobic denitrification and its optimization[J]. Chinese Journal of Environmental Engineering, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127

有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化

    作者简介: 谭丰佚 (1998—) ,男,硕士研究生,m17861508275@163.com
    通讯作者: 徐康宁(1983—),男,博士,副教授,xukangning@bjfu.edu.cn
  • 基金项目:
    国家自然科学青年基金资助项目(52300075)
  • 中图分类号: X703

Effect of organic carbon on the biological nitrogen removal through heterotrophic nitrification-aerobic denitrification and its optimization

    Corresponding author: XU Kangning, xukangning@bjfu.edu.cn
  • 摘要: 异养硝化-好氧反硝化(HN-AD)是一种新型的高氨氮有机废水生物脱氮技术,目前在纯菌系统中的研究较多而更适合真实应用场景的混菌系统相关研究则较为缺乏,限制了技术的推广应用。本研究首先开发了具有HN-AD功能的活性污泥驯化方法并进行了验证,然后研究了碳源种类和C/N比的影响并进行了优化。结果表明,HN-AD污泥被成功驯化,自养硝化菌的丰度占比较低(<1%),在最佳脱氮效果运行条件下,Thauera逐渐富集并成为HN-AD系统的优势功能菌,其丰度占比高达69.7%。有机碳源对HN-AD脱氮系统具有重要影响,采用混合碳源(柠檬酸钠、乙酸钠、丁二酸钠,溶液中三者的COD比=1:1:1)并在C/N=20时实现了95%的氨氮去除率和89.6%的总氮去除效率,同时COD去除率高达92%,可实现高效脱氮和有机物去除。
  • 厌氧消化技术可有效处理污泥并产生绿色能源“沼气”,已成为污泥处理的重要发展方向[1]。在2013年“水环境治理三年行动方案” [2]及产业升级政策的契机下,北京市借鉴国际上大城市污泥处理经验,采取“热水解+厌氧消化+板框压滤+土地利用”的技术路线[3]处理中心城区的污泥,开创了污泥处理处置新思路。热水解技术被广泛应用在厌氧消化预处理阶段,随之产生的热水解厌氧污泥消化液是一种典型的高氨氮废水。此类废水主要指污泥经过热水解预处理及厌氧消化过程后排放的废水,以污泥消化液主。经过热水解预处理后的消化液具有比传统厌氧消化液更加复杂的水质特征,其特点为低CON/N。因此,在其处理过程中,高氨氮浓度、碱度严重不足,以及难降解底物抑制等问题尤为突出[4]。若采取传统硝化反硝化脱氮技术对其进行处理,不仅处理费用高,且出水水质难以保证。

    厌氧氨氧化菌(anaerobic ammonium oxidation bacteria, AnAOB)可利用亚硝酸盐作为电子受体将污水中的氨氮氧化为氮气。该脱氮过程仅需将50%的氨氮氧化为亚硝酸盐氮,可节省50%的曝气能耗、50%的碱度消耗及100%的有机碳源,且剩余污泥产量可降低约90%,温室气体排放量减少量大于90%[5-6]。目前,国外已有将厌氧氨氧化成功应用于污泥消化液、养殖废水、垃圾渗滤液等高氨氮废水处理工程的案例[7-12]。热水解厌氧消化液的氨氮高达2 000~3 000 mg·L−1,C/N低于1.5,温度约为30℃。这一水质特点使得其适合采用费用较低的厌氧氨氧化技术进行脱氮处理。然而,有学者通过小试实验发现热水解厌氧消化液中含有的可溶性有机物对氨氧化菌(ammonium oxidation bacteria, AOB)和厌氧氨氧化菌(anaerobic ammonia-oxidizing bacteria,AnAOB)具有较强的抑制作用,经过长期驯化也无法消除此抑制作用。另外,厌氧氨氧化技术应用于热水解厌氧消化液的处理难度更大[13-15],尚无成功案例。

    本研究团队在前期研究和实践中已将厌氧氨氧化高效脱氮技术成功应用于城市污水处理厂,并实现了产业化。本研究拟通过启动并调试利用短程硝化厌氧氨氧化(partial nitritation-anammox,PN-ANA)工艺进行热水解厌氧消化液的旁侧脱氮处理工程,深入考察PN-ANA工艺处理热水解厌氧消化液的工艺运行效果,拟评价该技术对城市污水处理厂主流区的影响,并对反应系统内的功能菌群进行定量分析,考察系统菌群的生长情况,以期为该工艺处理高氨氮废水的工程应用提供参考。

    本项目位于北京某污水处理厂泥区热水解厌氧消化液处理单元内,主体工艺采用连续流固定生物膜-活性污泥(integrated fixed-film activated sludge systems, IFAS)形式的PN-ANA技术。工艺流程为调节池→斜板沉淀池→生化池→二沉池(见图1)。主要反应池(即生化池)的有效容积为7 500 m3,其设计处理水量1 750 m3·d−1。该项目进水氨氮为(1 839±336) mg·L−1,总氮为(2 038±395) mg·L−1,悬浮物质量浓度为≤1 000 mg·L−1,溶解性COD为(2 584±870) mg·L−1。接种污泥为普通活性污泥加上5%填充比厌氧氨氧化挂膜填料。

    图 1  工艺流程图
    Figure 1.  The process flow diagram of the full-scale project
    注:RENOCAR®脱氮单元即生化池,为本团队注册商标。

    板框机房将脱水滤液汇集于总管,再通过重力流方式进入调节池,在调节池内停留约10 h进行均质,然后利用提升泵提升至斜板沉淀池。斜板沉淀池设有混凝区和沉淀区,通过投加PAM和PAC去除消化液中悬浮物(suspended solid, SS)及部分COD。斜板沉淀池出水通过重力流方式进入生化池。生化池设有混温区、缺氧区和好氧区。由于AnAOB对环境温度要求较高,为将生化池内水温控制在30~34℃,在其一端引入来自热水解换热器和主流区二沉池的出水。缺氧区内的反硝化作用将进一步提升总氮的去除率,好氧区则是通过曝气,使AOB和AnAOB共同发挥作用,实现消化液中总氮的一次性去除。生化池内泥水混合物经重力流入二沉池后,通过重力沉降作用实现泥水分离。分离后的污泥再回流至生化池,出水则排入厂内退水管线。

    工艺的启动与调试分为3个阶段进行(分别编号Ⅰ、Ⅱ、Ⅲ),其中启动含1个阶段,调试含2个阶段。阶段Ⅰ为活性污泥的短程硝化培养阶段(共15 d),即整个工程的启动阶段。阶段Ⅱ进行厌氧氨氧化生物膜的填料接种,即开启系统的运行调试。该阶段主要完成AnAOB的驯化及增殖,为半系列AnAOB生物膜填料接种过程,即仅占用构筑物容积一半(约4 800 m3)来进行,共持续100 d。阶段Ⅲ为全系列调试运行(共60 d),即将已驯化系统扩至容积为7 500 m3的完整构筑物中进行。之后,逐渐将处理水量增至2 000 m3·d−1,超过单系列设计处理水量1 750 m3·d−1。至此,整个工程启动并调试完毕。

    采用WTW在线仪表连续监测pH、DO。定期取水样经0.45 μm滤膜过滤后,检测其氨氮、亚硝酸盐氮、硝酸盐氮、溶解性COD等。定期取活性污泥和生物膜填料,并提取DNA,进行荧光定量PCR分析。具体水质检测方法为:纳氏试剂分光光度法检测氨氮;离子色谱法检测盒亚硝酸盐氮和硝酸盐氮的质量浓度;重铬酸钾法检测溶解性COD;重量法检测污泥质量浓度;过硫酸钾氧化紫外分光光度法检测总氮。

    短程硝化工艺的控制因素有DO、pH、游离氨(free ammonia, FA)、温度、泥龄等[16]。高氨氮废水中较易实现对FA的控制。亚硝酸盐氧化菌(nitrite-oxidizing bacteria, NOB)比AOB更容易受到FA抑制[17],FA质量浓度在1 mg·L−1以上便会对NOB产生明显抑制,但对AOB产生明显抑制的质量浓度则要达到10~150 mg·L−1 。工艺启动期的培养策略为:先通过FA抑制以促进系统中亚硝酸盐的积累;当系统接种普通回流污泥后,保持高氨氮条件下FA的质量浓度大于15 mg·L−1;7 d后,出水亚硝酸盐氮质量浓度达到100 mg·L−1,而系统出水硝酸盐氮质量浓度仍高达300 mg·L−1以上;继续FA抑制7 d后,系统出水亚硝酸盐氮质量浓度达到约400 mg·L−1,此时硝酸盐氮质量浓度持续降低至几乎为零,亚硝酸盐氮积累率达到90%以上,则表明系统顺利实现短程硝化启动。在启动过程中,短程硝化阶段氮素质量浓度及亚硝酸盐氮积累率见图2

    图 2  短程硝化阶段出水中氮素质量浓度变化情况
    Figure 2.  Changes of nitrogen concentration in effluent during partial nitritation

    接种AnAOB生物膜填料主要来自于处理普通污泥消化液及垃圾渗滤液的厌氧氨氧化系统。由于水质差异明显,且AnAOB生长缓慢,在接种量低的情况下微生物体系的抗冲击能力弱,易导致启动失败。再加上本工程在启动时厌氧氨氧化菌的种类和数量均有限,为保证启动初期系统菌种的浓度,采取半系列启动方式。接种生物膜填料的填充率为5%,生物膜中AnAOB占比高于10%。

    图3反映了调试过程中进水氨氮和出水三氮的变化。接种厌氧氨氧化生物膜的初期(前30 d),系统出水氨氮及亚硝酸盐氮质量浓度均在较高水平。出水氨氮波动较大,最高点大于200 mg·L−1,均值为145 mg·L−1;亚硝酸盐氮质量浓度最高值为80 mg·L−1,均值为53 mg·L−1。经过1个月的驯化,系统出水亚硝酸盐氮质量浓度有所降低,均值为20 mg·L−1,但出水氨氮仍有小幅波动,出水均值为88 mg·L−1。接种厌氧氨氧化生物膜2个月后,系统出水三氮明显趋于稳定,且质量浓度维持在较低水平。出水氨氮均值为70 mg·L−1;出水亚硝酸盐氮质量浓度为23 mg·L−1;出水硝酸盐氮质量浓度为37 mg·L−1

    图 3  接种AnAOB后系统出水水质变化
    Figure 3.  Changes of effluent water quality after AnAOB inoculation

    在阶段Ⅱ后期,尽管系统进水水量及处理负荷不断提高,但出水三氮质量浓度稳定且维持在较低状况(见图4)。在接种AnAOB生物膜填料后,经过2个月的调试运行,系统处理水量翻倍达到600 m3·d−1,3个月后处理水量持续翻倍达到1 200 m3·d−1。调试运行4个月后处理水量达到1 600 m3·d−1,总氮去除负荷达到0.25 kg·(m3·d)−1以上。

    图 4  启动期水量与总氮去除负荷变化趋势图
    Figure 4.  Trend chart of water quantity and total nitrogen removal load during startup period

    在阶段Ⅲ,系统已呈现较好的短程硝化厌氧氨氧化效果,于是进行半系列到全系列运行的扩容工作,即将生化池容积从4 800 m3扩容至7 500 m3。扩容方式为将已培养好的厌氧氨氧化生物膜填料直接接种到另外半个系列中。扩容2个月系统稳定后,将处理水量增至2 000 m3·d−1,超过单系列设计处理水量1 750 m3·d−1。此时的总氮去除负荷为0.3 kg·(m3·d)−1

    由于AnAOB世代时间长(约11 d),对生存环境非常敏感[18],实现厌氧氨氧化系统的快速启动成为该技术工程化应用中的难题之一[19]。世界上首个生产性规模的两段式厌氧氨氧化装置以消化污泥为种泥,历经3年半启动成功[20]。不同的反应器类型和不同的接种污泥类型亦会影响系统启动时间[21]。本项目在IFAS工艺中接种成熟厌氧氨氧化生物膜(生物膜上AnAOB占比高于10%),在池容5%填充比条件下进行分级培养,并在6个月内成功启动系统,具有重要的参考意义。

    系统调试期间总氮和氨氮去除率及去除负荷见图5。氨氮和总氮去除负荷均稳步提升,调试6个月后达到0.3 kg·(m3·d)−1以上。尽管氨氮和总氮的去除率略有波动,但氨氮平均去除率达到86%,总氮去除率达到78%。这表明本项目已实现了PN-ANA技术处理热水解厌氧消化液,进行总氮去除的目标。后期将通过自控系统的改进来改善处理效果波动的问题。

    图 5  氨氮和总氮去除效果的变化
    Figure 5.  Changes of removal efficiencies of ammonia nitrogen and total nitrogen at startup stage

    本项目为旁侧处理,处理后二沉池的出水排入厂内退水管线,进入水厂主流区(日处理量100×104 t)进一步处理(见图6)。图6左侧为旁侧PN-ANA正常运行期间(日处理消化液1 600 m3),主流区8个平行运行的二沉池出水总氮变化情况。其中,这8个二沉池运行近1个月的平均出水总氮为15.5 mg·L−1。右侧为旁侧PN-ANA项目施工停运期间热水解厌氧消化液直接排入厂区退水管线后,进入主流区的情况下,主流区8个平行运行二沉池的出水总氮变化。其中,这8个二沉池平均出水总氮为18.7 mg·L−1。这表明日处理热水解厌氧消化液1 600 m3的旁侧PN-ANA工艺可降低主流区二沉池出水总氮约3 mg·L−1,并有效减轻主流区的总氮去除压力。

    图 6  消化液旁侧PN-ANA脱氮对主流区二沉出水TN的影响
    Figure 6.  Effect of PN-ANA denitrification on TN of secondary effluent in mainstream
    注:图中编号为二沉池编号。

    本项目接种污泥为主流区回流污泥,共2 700 m3。2种不同材质(海绵和塑料)的空白填料在阶段Ⅰ被安装至生化池内部。在整个启动和调试的6个月中,将生化池内絮体污泥及生物膜填料定期取样保存,并进行定量PCR分子生物学分析,用数据直观反映系统内脱氮功能菌群的数量变化,以表征系统内功能菌群的培养效果。污泥样品分别为:接种污泥,即污水处理厂回流污泥;分别在项目调试1个月、2个月和4个月时取的污泥絮体;在项目调试4个月时分别在海绵和塑料填料中取样。自调试开始后,絮体污泥中总细菌数及各脱氮微生物数量的关系如图7所示。系统内全菌在活性污泥接种1个月后基本保持不变,维持在1012数量级。这表明系统在不排泥的运行模式下微生物总量趋于稳定。NOB的2个属(NitrospiraNitrobacter)数量降低明显,其中Nitrobacter在系统中明显低于其他几种微生物,且一直保持较低水平。这与系统长期保持低DO(<0.5 mg·L−1)运行条件有关[22]Nitrospira在接种的活性污泥中数量虽略高于AOB一个数量级,但在高氨氮系统FA持续抑制作用下数量不断降低。而随着AOB的不断增长,调试后高于Nitrospira 2个数量级。这表明经过4个多月的调试后,该系统的短程硝化效果良好,可为AnAOB提供大量亚硝酸盐基质。而对于AnAOB,其絮体污泥增长明显,但是绝对数值与AOB仍有2个数量级的差距。

    图 7  絮体污泥中微生物数量
    Figure 7.  Number of microorganisms in floc sludge
    注:细菌丰度指单位质量MLSS中的微生物数量。

    经过4个月调试运行,填料上挂膜微生物数量如图8所示。2种NOB(NitrospiraNitrobacter)数量均处于较低水平。而AOB数量略高,达到108数量级以上,AnAOB更是高于1010数量级以上。因此,AOB及Nitrospira 2种好氧菌更倾向于生长在溶解氧及基质较为充足的悬浮絮体中,而厌氧的AnAOB更多分布在溶解氧传播受限的生物膜填料上,如Nitrobacter在本项目中数量很低,几乎可忽略其作用。这亦表明系统内的微生物已适应了环境条件,并基于自身特性及基质获取的难易程度,选择了适宜的生存位置,由此形成了自然选择的系统微生物空间分布[23]

    图 8  填料上各微生物数量分布图
    Figure 8.  The distribution diagram of the quantity of each microorganism on the filler
    注:细菌丰度指单位质量MLSS中的微生物数量。

    硝化菌群由AOB和NOB(主要是NitrospiraNitrobacter)组成。本项目采用的PN-ANA工艺是利用AOB将部分氨氮氧化成亚硝酸盐氮,再在AnAOB作用下将剩余氨氮和亚硝酸盐氮直接还原为氮气,从而实现污水中的脱氮处理。因此,应尽量抑制NOB在该系统中的活性及其增长,从而促进AOB和AnAOB的活性及增长。本项目调试阶段的4个样品中各种硝化菌占硝化菌群总数的比例见图9

    图 9  3种菌各自占硝化菌群总数的比例
    Figure 9.  The proportion of three kinds of bacteria in the total nitrifying bacteria

    接种的絮体污泥中NOB(NitrobacterNitrospira)占比较大,接近90%。AOB只占硝化菌群约10%,这符合城市污水处理厂普通活性污泥中硝化细菌的特征。但是,经过1个月的短程硝化培养,AOB所占比例迅速升至95%以上,并随着调试的进行比例不断提高;而以Nitrospira为代表的NOB菌群占比显著降低。这表明该系统内NOB的增殖得到了有效抑制,实现了效果较好的短程硝化,亦与系统进出水水质数据相吻合。

    絮体污泥中各脱氮微生物占细菌总数比例见图10。NOB(包括NitrospiraNitrobacter)的比例均显著降低。而AOB和AnAOB这2种在PN-ANA过程中发挥主要作用的微生物比例逐步提高。这表明项目经过4个多月的调试,已经很好实现了NOB的抑制、AOB和AnAOB的富集。

    图 10  絮体中各脱氮微生物占细菌总数比例图
    Figure 10.  The proportion of denitrifying microorganisms to total bacteria in flocs

    1)三段式启动和调试步骤保证了本项目循序渐进实现成功运行:在短程硝化阶段采取的FA抑制策略有效促进系统中亚硝酸盐的积累,提供了脱氮功能菌的生存环境,以实现系统启动;在随后两步调试运行阶段,系统通过半系列运行实现了微生物驯化及有效富集,并在全系列运行中逐步达到设计处理水量及稳定运行。

    2)工程项目调试运行结果表明:可应用短程硝化-厌氧氨氧化(PN-ANA)工艺实现热水解厌氧消化液总氮去除。在接种生物膜填充比5%,生物膜上AnAOB占比高于10%条件下可在6个月内达到设计处理水量。应用PN-ANA技术进行消化液旁侧处理,可有效减轻主流区的总氮去除压力。

    3)项目自调试以来,脱氮功能菌AOB和AnAOB在绝对数量和相对比例上均有较为显著的增加,NOB绝对数量和相对比例均有不同程度的降低,这从微生物角度表明该项目的调试取得了成功。定量PCR数据显示,一体化PN-ANA系统内AOB和AnAOB呈现不同的空间分布特点,AOB主要分布在絮体污泥中,而AnAOB更多分布在生物膜填料上。

  • 图 1  HN-AD系统启动过程的脱氮效果

    Figure 1.  The efficiency of nitrogen removal at the start-up of the HN-AD process

    图 2  HN-AD系统成功启动前后的单周期过程特征

    Figure 2.  Characteristics of a single-cycle before and after the successful start-up of the HN-AD system

    图 3  硝化抑制剂对异养硝化脱氮系统的影响

    Figure 3.  Effect of nitrification inhibitors on the heterotrophic nitrification and denitrification system

    图 4  不同有机碳源下的氨氮去除效果

    Figure 4.  Removal efficiency of ammonium with different organic carbon sources

    图 5  不同C/N比对模拟废水中NH4+-N、TN、COD的去除效果

    Figure 5.  Removal efficiencies of NH4+-N, TN and COD from the simulated wastewater at different C/N ratios

    图 6  反应器出水三维荧光图及不同C/N比出水蛋白质和多糖质量浓度

    Figure 6.  Three-dimensional fluorescence pattern of reactor effluent and protein and polysaccharide concentrations of effluent at different C/N ratios

    图 7  异养硝化系统COD和氨氮去除的动力学拟合曲线

    Figure 7.  Kinetic fitting curves of the removal of COD and ammonium in the heterotrophic nitrification and denitrification system

    图 8  HN-AD系统在0、90和180 d细菌属水平的相对丰度

    Figure 8.  Relative abundances of microbes in the HN-AD system at genus levels on the 0, 90 and 180 d

  • [1] SHIMOKAWA S. Sustainable meat consumption in China[J]. Journal of Integrative Agriculture, 2015, 14(6): 1023-1032.
    [2] YANG L, WANG X H, CUI S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5[J]. Bioresource Technology, 2019, 285: 121360.
    [3] ROBERTSON L A, KUENEN J G. Aerobic denitrification: A controversy revived[J]. Archives of Microbiology, 1984, 139: 351-354.
    [4] CHEN J, GU S, HAO H, et al. Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification[J]. Applied Microbiology and Biotechnology, 2016, 100(22): 9787-9794.
    [5] 信欣, 姚力, 鲁磊, 等. 耐高氨氮异养硝化-好氧反硝化菌TN-14的鉴定及其脱氮性能[J]. 环境科学, 2014, 35(10): 3926-3932.
    [6] WANG Q, HE J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Research, 2020, 185: 116300.
    [7] ZHANG T, SHAO M F, YE L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2012, 6(6): 1137-1147.
    [8] SONG K, GAO Y, YANG Y, et al. Performance of simultaneous carbon and nitrogen removal of high-salinity wastewater in heterotrophic nitrification-aerobic denitrification mode[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109682.
    [9] CHEN J, ZHAO B, AN Q, et al. Kinetic characteristics and modelling of growth and substrate removal by Alcaligenes faecalis strain NR[J]. Bioprocess and Biosystems Engineering, 2016, 39: 593-601.
    [10] ANTHONISEN A, LOEHR R, PRAKASAM T, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal (Water Pollution Control Federation), 1976: 835-852.
    [11] REN S, WANG Z, JIANG H, et al. Stable nitritation of mature landfill leachate via in-situ selective inhibition by free nitrous acid[J]. Bioresource Technology, 2021, 340: 125647.
    [12] LEI Y, WANG Y, LIU H, et al. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium[J]. Applied Microbiology and Biotechnology, 2016, 100: 4219-4229.
    [13] HU B, LU J, QIN Y, et al. A critical review of heterotrophic nitrification and aerobic denitrification process: Influencing factors and mechanisms[J]. Journal of Water Process Engineering, 2023, 54: 103995.
    [14] LIU Y, WANG Y, LI Y, et al. Nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis C16[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 827-834.
    [15] OTANI Y, HASEGAWA K, HANAKI K. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources[J]. Water Science and Technology, 2004, 50(8): 15-22.
    [16] JIN Y, WANG W, LI W, et al. Efficient denitrification of liquid digestate with its indigenous microflora[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110636.
    [17] ZHAO Y, HUANG J, ZHAO H, et al. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates[J]. Bioresource Technology, 2013, 143: 439-446.
    [18] ZHANG Y, SHI Z, CHEN M, et al. Evaluation of simultaneous nitrification and denitrification under controlled conditions by an aerobic denitrifier culture[J]. Bioresource Technology, 2015, 175: 602-605.
    [19] PAN Z, ZHOU J, LIN Z, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301: 122726.
    [20] 樊华, 方凡, 刘强, 等. 基于平行因子分析的藻菌共生膜污染机制研究[J]. 膜科学与技术, 2020, 40(4): 1007-8924.
    [21] WANG Z, GAO M, WANG S, et al. Effect of hexavalent chromium on extracellular polymeric substances of granular sludge from an aerobic granular sequencing batch reactor[J]. Chemical Engineering Journal, 2014, 251: 165-174.
    [22] HU J, YAN J, WU L, et al. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation[J]. Bioresource Technology, 2021, 341: 125818.
    [23] ZHAO Y, ZHU Z, CHEN X, et al. Discovery of a novel potential polyphosphate accumulating organism without denitrifying phosphorus uptake function in an enhanced biological phosphorus removal process[J]. Science of the Total Environment, 2024, 912: 168952.
  • 期刊类型引用(6)

    1. 张海波,闫洋洋,程红艳,常建宁,黄菲,张国胜,闫梦. 菌糠生物炭对土壤铅镉形态及甜菜生长的影响. 山西农业大学学报(自然科学版). 2021(01): 103-112 . 百度学术
    2. 王忠凯,汤睿,李泽华,朱颖,云军阁,黄国富,宋蓉蓉,张寒冰,童张法. 螺蛳壳和玉米芯复合吸附剂的制备及其对BP-3的去除. 应用化工. 2021(02): 324-330 . 百度学术
    3. 刘振刚,夏宇,孟芋含,孙御婷,李凯,邓心怡. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析. 环境工程学报. 2021(04): 1140-1148 . 本站查看
    4. 贾林,张金龙,刘璐瑶,王鹏山,李志明,田晓明. 生物炭在盐碱区域土壤环境生态修复中的应用. 环境科学与技术. 2021(S2): 124-131 . 百度学术
    5. 雷建森,吴梦茹,李亚茹,孙雅雅,丁琳洁,张鑫,陈治华. 八宝景天热解动力学特征及其对六价铬的吸附. 环境化学. 2020(10): 2907-2920 . 百度学术
    6. 吴文杰. 新零售业态下生鲜冷链包装材料对环境污染影响研究. 环境科学与管理. 2020(12): 35-40 . 百度学术

    其他类型引用(10)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 10.1 %DOWNLOAD: 10.1 %HTML全文: 82.6 %HTML全文: 82.6 %摘要: 7.2 %摘要: 7.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 100.0 %其他: 100.0 %其他Highcharts.com
图( 8)
计量
  • 文章访问数:  2084
  • HTML全文浏览数:  2084
  • PDF下载数:  86
  • 施引文献:  16
出版历程
  • 收稿日期:  2023-12-25
  • 录用日期:  2024-04-25
  • 刊出日期:  2024-04-26
谭丰佚, 刘新颖, 党岩, 李继云, 徐康宁. 有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化[J]. 环境工程学报, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127
引用本文: 谭丰佚, 刘新颖, 党岩, 李继云, 徐康宁. 有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化[J]. 环境工程学报, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127
TAN Fengyi, LIU Xinying, DANG Yan, LI Jiyun, XU Kangning. Effect of organic carbon on the biological nitrogen removal through heterotrophic nitrification-aerobic denitrification and its optimization[J]. Chinese Journal of Environmental Engineering, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127
Citation: TAN Fengyi, LIU Xinying, DANG Yan, LI Jiyun, XU Kangning. Effect of organic carbon on the biological nitrogen removal through heterotrophic nitrification-aerobic denitrification and its optimization[J]. Chinese Journal of Environmental Engineering, 2024, 18(4): 1183-1191. doi: 10.12030/j.cjee.202312127

有机碳源对异养硝化-好氧反硝化生物脱氮的影响及其优化

    通讯作者: 徐康宁(1983—),男,博士,副教授,xukangning@bjfu.edu.cn
    作者简介: 谭丰佚 (1998—) ,男,硕士研究生,m17861508275@163.com
  • 1. 北京林业大学环境科学与工程学院,北京市水体污染源控制技术重点实验室,北京 100083
  • 2. 清华大学环境学院,北京 100084
基金项目:
国家自然科学青年基金资助项目(52300075)

摘要: 异养硝化-好氧反硝化(HN-AD)是一种新型的高氨氮有机废水生物脱氮技术,目前在纯菌系统中的研究较多而更适合真实应用场景的混菌系统相关研究则较为缺乏,限制了技术的推广应用。本研究首先开发了具有HN-AD功能的活性污泥驯化方法并进行了验证,然后研究了碳源种类和C/N比的影响并进行了优化。结果表明,HN-AD污泥被成功驯化,自养硝化菌的丰度占比较低(<1%),在最佳脱氮效果运行条件下,Thauera逐渐富集并成为HN-AD系统的优势功能菌,其丰度占比高达69.7%。有机碳源对HN-AD脱氮系统具有重要影响,采用混合碳源(柠檬酸钠、乙酸钠、丁二酸钠,溶液中三者的COD比=1:1:1)并在C/N=20时实现了95%的氨氮去除率和89.6%的总氮去除效率,同时COD去除率高达92%,可实现高效脱氮和有机物去除。

English Abstract

  • 我国是世界上畜禽养殖第一大国,畜禽养殖业排放化学需氧量(chemical oxygen demand, COD)、氨氮和总氮的量占农业污染排放总量的比例分别达到了95.2%、76.8%和62.4%[1]。畜禽养殖过程产生大量高氨氮有机废水,已成为水体污染的最主要来源,对这部分废水的有效处理成为畜禽养殖业污染控制的关键[2]。对于畜禽养殖废水的处理通常采用除碳+脱氮的耦合工艺,其中除碳过程通过厌氧消化将有机物转化为甲烷回收,而脱氮过程往往采用生物脱氮方法。传统的生物脱氮技术需要结合自养菌的好氧硝化作用和异养菌的缺氧反硝化作用,但是,当硝化和反硝化在2个独立单元中进行时(如A/O工艺),需要进行混合液回流,通常具有占地面积大和建设投资成本高等缺点。虽然当硝化和反硝化在同一个反应器内(SBR工艺)进行时,能够节省占地和成本,但需要分时段控制曝气和投加碳源,增加了操作复杂性。在处理畜禽养殖废水的厌氧消化液时,一方面,高氨氮质量浓度易对自养硝化产生抑制;另一方面,厌氧消化处理后出水中仍会残留很多有机物,这将进一步抑制自养硝化效果。因此,十分有必要开发更适宜的高氨氮有机废水处理技术。

    异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification, HN-AD)菌能够适应高质量浓度的氨氮和有机物,通过异养硝化与好氧反硝化作用的耦合,在好氧条件下能够将废水中的氨氮转化为氮气,实现高效脱氮,整个代谢过程几乎没有亚硝态氮/硝态氮的积累,同时有机物也得到了降解和去除。1984年,ROBERTSON等[3]将首株HN-AD菌Thiosphaera pantotropha从硫氧化脱硝废水处理装置中分离出来。近年来,越来越多的HN-AD菌被发现,它们大多具有世代时间短和耐受性强等优势,对高质量浓度的氨氮和有机物有较好的耐受和处理效果[4]。HN-AD菌Comamonas WXZ-17可耐受817 mg·L−1的氨氮质量浓度,Acinetobacter sp. TN-14能在氨氮质量浓度高达1 200 mg·L−1的环境下生长[5]。HN-AD菌耐受高氨氮的同时能实现对其转化脱除,如Thauera sp. SND5的平均氮去除速率约为2.85 mg·(L·h)−1[6]Bacillus methylotrophicus L7在初始氨氮质量浓度为1 121.2 mg·L−1的条件下,总氮去除速率可达3.8 mg·(L·h)−1[7]。因此,HN-AD技术可以适应高氨氮有机废水的脱氮处理,反应速率高、处理时间短,同时能够在同一个处理单元中在好氧条件下实现有机物和氨氮、总氮的同步去除,降低工艺复杂度,有望为高氨氮有机废水提供一种具有更高效率和更低成本的新技术。目前相关的研究以纯菌HN-AD系统较多,而实际工程中很难做到纯菌环境,那么具有HN-AD功能的污泥驯化就非常重要,是实现技术应用的关键,然而相关的研究仍然较为缺乏。SONG等[8]针对高盐榨菜废水的处理,经过105 d驯化建立了HN-AD混菌系统,COD和总氮去除率分别达到了93.2%和82.4%。但是,上述方法的驯化时间长,系统启动较慢,迫切需要一种在实际应用场景中低成本、快速、有效驯化具有HN-AD功能活性污泥的方法以及有机碳源对系统运行的影响及其优化相关的研究。

    因此,本研究考察了在固定C/N比条件下驯化HN-AD活性污泥的方法,并进行了HN-AD效果验证,选择了3种碳源以探究碳源种类和C/N比对系统运行效果的影响,分析了系统中有机物降解和脱氮的动力学特征,揭示了系统中的优势功能菌,以期为实际工程中畜禽养殖废水厌氧消化液等高氨氮有机废水的高效处理提供技术支撑。

    • 本研究采用间歇式反应器,材质为有机玻璃,内径为150 mm,主体高170 mm,有效容积为3.0 L。在反应器底部放置曝气盘,外接空气曝气泵,同时,在反应器上方设搅拌桨充分混合活性污泥和废水,以确保溶解氧(DO)分布均匀。反应器中插有pH和DO电极,用于在线监测pH和DO。

      实验用水选用模拟配水,以NH4Cl(100~600 mg·L−1, 以氮浓度计)作为氮源,添加KH2PO4(20 mg·L−1, 以磷浓度计)补充磷源,添加微量元素(1 mL·L−1),添加乙酸钠、柠檬酸钠、丁二酸钠的混合碳源(溶液中三者的COD比=1:1:1)作为生物可利用有机碳源(2 000~12 000 mg·L−1,以COD计)。通过调整进水碳源和氮源质量浓度以控制配水的碳氮比。

    • 反应器采用序批式运行模式,每个周期分为5个阶段:进水(10 min)、曝气加搅拌运行、沉降(20 min)、出水(10 min)、空闲(1 h)。反应在室温下运行,通过实时监测DO来控制曝气阶段的运行时长,采用蠕动泵进水和排水,出水阶段排水比为0.25。实验装置共运行175 d,设置了系统启动、进水负荷提升和C/N比优化3个阶段。

      第Ⅰ阶段:启动HN-AD系统,将北京某污水厂二沉池的活性污泥投入反应器,通过定期排泥(污泥龄12~15 d)排出部分死菌和细胞分泌物,以维持微生物的新陈代谢活性。初始进水COD和氨氮质量浓度分别为2 000 mg·L−1 和100 mg·L−1。根据自养氨氧化过程,每氧化1 g氨氮需要消耗7.14 g碱度(以碳酸钙计),在进水中投加NaHCO3补充至所需碱度。保持C/N比为20,逐步提高进水氨氮质量浓度(每5个周期提升100 mg·L−1)来驯化HN-AD菌群。验证HN-AD系统,当系统启动成功后不再额外补充碱度。第Ⅱ阶段:HN-AD系统的进水氨氮质量浓度进一步提升到300 mg·L−1,待系统运行稳定后,每5个周期提升100 mg·L−1,逐步将进水氨氮提升至600 mg·L−1。第Ⅲ阶段:保持进水氨氮质量浓度为600 mg·L−1,探究不同C/N比(15、20、25)对HN-AD系统脱氮效率的影响,优化出最佳运行条件。

    • 从反应器中取出50 mL活性污泥,移至250 mL锥形瓶,随后加入50 mL模拟配水进行实验。设置模拟配水中C/N=20,采用混合碳源(乙酸钠、丁二酸钠和柠檬酸钠的COD比=1:1:1)。模拟配水中进水氨氮质量浓度为100 mg·L−1。在实验组中添加自养硝化抑制剂3,4-二甲基吡唑磷酸盐(C5H8N2·H3O4P,DMPP),于25 ℃、160 r·min−1振荡培养36 h,每间隔一段时间取水样测试氨氮、硝态氮、亚硝态氮的质量浓度。

    • 相比于糖类等大分子物质,乙酸钠、柠檬酸钠和丁二酸钠等小分子更容易被HN-AD菌所利用,能够直接参与三羧酸循环代谢过程。考虑到畜禽养殖废水厌氧消化液中常含有小分子挥发性脂肪酸的特点,因此,本研究选用乙酸钠、柠檬酸钠和丁二酸钠作为实验所用碳源,以研究碳源种类的影响。

      从反应器中取出50 mL活性污泥,移至250 mL锥形瓶,随后加入50 mL模拟配水(含氨氮200 mg·L−1)进行实验。在模拟配水中,分别采用乙酸钠、丁二酸钠、柠檬酸钠及3种有机物作为混合碳源,以确保锥形瓶内在进水后的初始COD和氨氮质量浓度分别为2 000 mg·L−1和100 mg·L−1,于25 ℃、160 r·min−1振荡培养36 h,每间隔一段时间取水样测试氨氮、硝态氮、亚硝态氮的质量浓度。

    • HN-AD系统启动成功并稳定运行后,在初始有机物和氨氮质量浓度分别为3 000 mg·L−1和150 mg·L−1的单个周期,实时监测COD值、氮质量浓度变化。采用修正的Gompertz模型[9](式(1))对底物去除过程进行拟合,解析底物质量浓度与反应时间的关系。

      式中:St时刻底物质量浓度,mg·L−1S0为初始底物质量浓度,mg·L−1Rm为最大去除速率,mg·(L·h)−1t0为迟滞时间,h。

    • 1)常规水质分析方法。COD值和各种氮化合物的质量浓度用标准方法测定。用纳氏分光光度法在425 nm处测定氨氮,用比色法在540 nm处测定亚硝态氮,用紫外分光光度法在220 nm和275 nm处测量硝态氮。用手持便携式分析仪测量pH和溶解氧(德国WTW Multi 3320)。铵(NH4+-N)由于水解反应会转化为分子态氨,也称为游离氨(free ammonia, FA),FA质量浓度由NH4+-N、pH和温度确定,根据式(2)[10]进行计算。

      式中:ρFA为游离氨质量浓度,mg·L−1CNH+4-N为氨氮质量浓度,mg·L−1;pH为溶液的酸碱度;T为温度, ℃。

      2)微生物群落结构测定。从反应器中取一定量的活性污泥,根据E.Z.N.A.® soil DNA kit(Omega Bio-tek, Norcross,美国)说明书进行微生物群落总DNA抽提,用NanoDrop2000(赛默飞世尔科技,美国)测定DNA的浓度和纯度。使用引物338F(5’-ACTCCTACGGGAGGCAGCAG-3’)和806R(5’-GGACTACHVGGGTWTCTAAT-3’)对16S rRNA基因V3~V4可变区进行PCR扩增,并用琼脂糖凝胶电泳检测PCR结果。使用Illumina MiSeq平台(美吉生物医药科技有限公司,上海)对纯化的聚合酶链反应产物进行测序。

    • 在C/N比为20的条件下,通过进水氨氮质量浓度的梯度提升来驯化活性污泥,增加HN-AD菌的相对丰度,进而构建HN-AD脱氮系统,结果如图1所示。结果表明,系统启动初始,进水氨氮质量浓度为100 mg·L−1,逐步提升进水氨氮质量浓度,在1~10周期(进水氨氮≤200 mg·L−1),氨氮去除率(>95%)较高,出水中亚硝态氮质量浓度(<0.1 mg·L−1)较低,但积累了一定质量浓度的硝态氮(>20 mg·L−1),推测系统中发生了以自养硝化为主的硝化过程,此时总氮去除率只有约38%。由图2(a)可见,在系统启动初期(第7周期)的反应过程可以看出,随着氨氧化的进行,亚硝态氮质量浓度先升高后降低,硝态氮质量浓度逐步升高并出现积累。在该周期的反应过程中,游离氨质量浓度在6 h时升至20 mg·L−1,高于抑制亚硝酸盐氧化菌(nitrite oxidizing bacteria, NOB)的FA阈值(0.1~5.0 mg·L−1),亚硝态氮出现积累且质量浓度到达峰值(9 mg·L−1),但随着反应的进行,FA质量浓度迅速降低至5 mg·L−1以下,亚硝态氮积累消失且硝态氮质量浓度不断上升。

      图1可见,在第11周期,将进水氨氮质量浓度提升至300 mg·L−1,对应进水FA达到76.8 mg·L−1,已高于大多数研究报道的自养氨氧化菌(ammonia oxidizing bacteria, AOB)和NOB的抑制阈值。虽然该周期氨氮去除率降低至76%,但出水中不再有硝态氮累积(<2 mg·L−1),总氮去除率达到67.8%,从这一周期开始,系统不再额外补充碱度。当FA质量浓度为20~40 mg·L−1时,自养AOB的氨氧化性能会受到严重影响[11],而HN-AD菌属,如Acinetobacter YB、Bacillus WXZ-8和Zobellella DN-7等,在较高质量浓度FA时(>100 mg·L−1)仍能正常发挥氨氧化功能[12-13]。由此可知,异养硝化菌对FA的耐受能力远高于自养硝化菌,推断此时系统中较高质量浓度的FA抑制了自养AOB,硝化作用主要由HN-AD菌贡献。随着反应器运行,HN-AD系统脱氮性能不断提升。由图2(b)可见,第15周期的氨氮去除率和总氮去除率分别提升至92%和83%,有机物和氨氮实现了同步降解,并且未出现硝态氮和亚硝态氮的积累。在该周期FA质量浓度始终维持在40 mg·L−1以上,且在6 h时达到70.5 mg·L−1,从而较稳定地实现对自养AOB和NOB的抑制,有利于HN-AD菌的富集。当第16周期进水氨氮质量浓度进一步提升至400 mg·L−1,氨氮去除率和总氮去除率依然保持在91%和85%,至此认为HN-AD系统启动成功。

      通过投加抑制剂DMPP抑制自养硝化,根据氨氮转化性能验证了系统中发生的主要硝化反应类型。由图3(a)可知,驯化前,投加DMPP实验组氨氮质量浓度基本没有下降,而空白组则正常进行氨氧化过程,这表明抑制剂显著抑制了氨氮的转化。由图3(b)可知,驯化后,投加DMPP实验组与空白组的氨氮质量浓度呈现相似下降趋势,表明氨氧化过程并未受到抑制。综上所述,系统启动成功后,体系中硝化反应的主要类型是异养硝化。

    • 选择合适的碳源有利于实现最佳的菌体生长和脱氮性能,可以提高反应效率并缩短反应时间。本研究选用乙酸钠、柠檬酸钠和丁二酸钠作为实验所用碳源,在混菌系统中研究了有机碳源种类的影响。从图4可以看出,用乙酸钠、柠檬酸钠、丁二酸钠作唯一碳源时,48 h的氨氮去除率分别达到了79.5%、83.3%和87.9%;而将上述3种碳源混合使用时,48 h的氨氮去除率达到了96.1%。不同种类碳源的分子构成和氧化还原电位存在差异,因此,HN-AD菌对他们的利用程度各不相同[13]。有研究表明,以丁二酸钠为碳源时,Thauera sp. SND5菌株对氮的去除效果较好[6];利用柠檬酸钠为碳源时,Alcaligenes faecalis C16菌株的脱氮效率最高[14];而对于Paracoccus pantotrophus菌株,乙酸钠是发挥最佳脱氮性能的碳源[15]。因此,在本研究的HN-AD系统中,不同的单一碳源会表现出脱氮性能的差异,而混合碳源可以更好地满足混菌体系中不同种HN-AD菌属的需求,从而使系统具有更好的脱氮性能。由于畜禽养殖废水中存在大量乙酸等小分子有机酸,所以当用HN-AD系统处理该类废水时,有望能够保证较高的脱氮效率。

    • 在HN-AD系统采用混合碳源的基础上,进一步研究了系统进水C/N比的影响。结果表明,C/N比对HN-AD菌的脱氮效率有显著影响。

      图5(a)所示,当C/N比为15时,系统的氨氮去除率为80.3%,同时出水中几乎没有硝态氮或亚硝态氮积累;将C/N比提升为20后,HN-AD系统脱氮效率明显上升,随着系统运行,HN-AD系统运行稳定,氨氮去除率提高到了95%;将C/N比提高到25后,脱氮性能有所下降,氨氮去除率降低为90%。总氮的去除率也随着C/N比的优化而发生变化,在C/N比为20时,总氮去除率达到了89.6%,之后继续提升C/N比并不能显著提升总氮去除率。不同HN-AD菌的最优C/N比不同,Aliidiomarina在C/N比为9时,氨氮去除率达到93.7%[16]Thauera sp.TN9在C/N比为22时氮去除效率最高,达到99.2%[17]Paracoccus versutus LYM在C/N比为20时,氮去除率达到97.09%[18]。一方面,C/N比过低会导致碳源不足,使得细胞生长受限以及缺乏电子供体,进而导致脱氮效率下降;另一方面,C/N比过高可在一定程度上抑制脱氮效果[19]。因此,合适的C/N比对于HN-AD系统的低耗高效运行至关重要,后续可将C/N比设为20~25进一步优化,以确定HN-AD系统的最佳C/N比。

      图5(b)所示,随着进水C/N比的提高,系统出水的COD值不断增加,由于出水中没有检测到进水所用碳源,因此推测出水中的COD来源于微生物的细胞分泌物。对出水进行三维荧光测试,结果显示较明显的荧光峰(Ex/Em=260~300 nm/300~370 nm)为色氨酸荧光蛋白峰,同时,另一个较明显的荧光峰(Ex/Em=330~370 nm/400~475 nm)为类腐殖酸的峰,表明蛋白质和腐殖酸是出水中有机物的组成部分。这可能是由于高C、N质量浓度环境刺激了微生物产生大量细胞代谢产物,形成高浓度的胞外聚合物(extracellular polymeric substances, EPS),EPS主要由多糖和蛋白质组成,可分为溶解态和结合态2种形态,其中大部分溶解态EPS可以随出水排出系统[20]。WANG等[21]研究表明,在微生物处于极端的生存环境时,EPS中色氨酸和芳香类蛋白荧光强度会显著增强。

      本研究进一步对出水中的蛋白质和多糖进行了测定,结果如图6(b)所示,发现其含量随着C/N比提高而不断增加,换算成COD当量后发现,蛋白质和多糖分别占出水总COD的60%~70%。当对高碳质量浓度有机废水进行脱氮处理时,HN-AD菌的繁殖速度远远快于自养硝化菌,但其生长过程产生的大量溶解态EPS很可能导致出水有机物超标,后续可以通过增加膜组件构成膜-生物反应器对这些大分子物质截留,从而保证出水水质达到排放标准。

    • HN-AD系统具有同步除碳脱氮的特性,通过修正的Gompertz模型[9]来进一步解析底物去除过程。针对典型周期,分别对COD和氨氮质量浓度随时间的变化进行动力学拟合,结果如图7所示。COD的最大去除速率为174.1 mg·(L·h)−1(R2=0.992),氨氮的最大去除速率为8.66 mg·(L·h)−1 (R2=0.999)。已有研究[22]表明,大部分HN-AD纯菌的氨氮去除速率为3~8 mg·(L·h)−1,而本研究所构建HN-AD系统显示出比纯菌体系更高的氨氮去除速率。此外,对典型周期各时间点的COD和氨氮质量浓度进行相关性拟合。如图7(c)所示,反应过程中两者呈现出较好的相关性(R2=0.997),从而间接证明了HN-AD过程氨氮转化需要碳源,有助于实现碳氮协同降解。上述拟合结果有助于深入了解系统性能,并优化HN-AD系统在实际应用时的设计和运行参数,以实现高质量浓度含氮有机废水处理过程高效稳定的除碳脱氮。

    • 在属水平上的污泥物种组成分析结果如图8所示,HN-AD系统中的优势菌为Thauera(69.7%),而自养硝化菌的丰度较低(<1%)。已有研究[6,17]表明,Thauera细菌可以参与氮循环过程,具有异养硝化-好氧反硝化功能,通常存在于极端环境中,对高COD和高氨氮环境具有较强的适应能力,Thauera细菌具有降解有机物的能力,特别是一些具有环境污染潜力的有机污染物,如芳香烃类化合物和氯化有机化合物,其代谢能力可以用于生物修复和废水处理等环境应用。相对丰度第2高的Propioniciclava(8.3%),该菌属是一种潜在聚磷菌,能够在厌氧阶段完成聚磷代谢[23]。属水平微生物群落分析结果表明,在驯化过程中,Thauera相对丰度显著增加,成为主导性的菌种。以上结果对于深入了解HN-AD系统的微生物群落动态和功能特性具有重要意义。

    • 1)通过逐渐提升进水COD和氨氮质量浓度的方法可以快速实现HN-AD污泥的驯化,并通过单个周期的COD和氨氮质量浓度监测证实了HN-AD功能的启动。

      2)有机碳源对系统的脱氮效果有重要影响,柠檬酸钠、乙酸钠和丁二酸钠的混合碳源更有利于异养硝化脱氮,当C/N比为20时,HN-AD系统的脱氮效率最高。采用Gompertz动力学模型分别拟合了氨氮和COD底物的去除过程,模型相关系数R2均在0.9以上,证实了氨氮去除和有机物去除的相关性。

      3)在优化条件下,HN-AD系统实现了95%的氨氮去除率、89.6%的总氮去除效率和92%的COD去除率,这表明该工艺可同步实现高效脱氮和有机物的去除。高通量分析结果表明,Thauera相对丰度显著增加,并成为了HN-AD系统中的优势菌种。

    参考文献 (23)

返回顶部

目录

/

返回文章
返回