-
磷(P)是现代农业和化学工业中广泛使用的重要资源,通常以磷酸盐的形式存在于水溶液中[1]. 然而,在磷化工的快速发展和过量施用磷肥下导致磷大量向淡水资源转移,水体磷浓度超标,藻类过度生长,引起水体富营养化,造成磷资源损失和环境污染[2 − 3]. 此外,磷是一种不可再生资源,由于每年对磷的需求不断增长[4],预计在未来100—400年内将完全消耗掉[5]. 因此,废水中磷的去除和回收对于缓解富营养化染和磷资源危机至关重要[6].
迄今为止,化学沉淀[7]、膜分离工艺[8]、生物处理[9]、阴离子交换[10]和吸附[11]等多种技术已被证明可以用于去除水体中磷酸盐. 而吸附法因其操作简单、效率高成本低、应用方便等优点,吸引了众多研究人员的关注. 已经发现多种吸附材料,如水和氧化铁[12]、多孔二氧化硅[13]和碳基材料[14]等,它们具有良好的吸附性,用于去除废水磷酸盐的吸附剂. 但相对而言,这些吸附剂多为粉末形式很难在水中回收,这可能会造成二次污染问题[15]. 并且一些材料存在苛刻的问题制备条件好,成本高,去除能力低,难以分离等缺点. 制备高效稳定、绿色环保可循环利用的新型磷酸盐吸附材料吸附和回收水体磷酸盐,这是近年来的研究热点之一[16].
近年来,合成纤维作为催化剂和吸附剂载体受到研究者的广泛关注. 其中,腈纶纤维(PANF)含有丰富的氰基和酯基等化学性质活泼的基团,在一定条件下可以进行特定的化学反应,并可以转化为具有多种官能团的新型功能化纤维,是一种优秀的载体材料. 腈纶纤维具有成本低、易获得、密度低、柔韧性好等特点,其在大规模机械化加工和环境保护方面也具有一定的优势[17]. 腈纶纤维可以在一定条件进行灵活改性,构建富含氨基、羟基、羧基、季铵盐等组分[18]. 例如,Xu等[19]通过简单的化学接枝反应合成了一种可回收的载铁胺化聚丙烯腈纤维(PANAF-Fe)去除废水中的磷酸盐;Zheng等[20]合成了富含氯离子的功能化聚丙烯腈纤维(PANAF-Cl),对废水中磷酸盐的去除率高达90%以上,最大吸附容量为15.49 mg·g−1. 丁天琦[21]以聚丙烯腈(PAN)作为基体,制备出多孔碳纳米纤维膜,对磷酸盐最大去除量可达131 mg·g−1.
铁、铜、镧等金属和磷酸盐具有较强的结合能力,其在水体磷酸盐的去除获得较多的应用. 然而,使用固载铜离子的胺化纤维对水中磷酸盐的吸附尚缺乏研究. 本研究以腈纶纤维为原料,将Cu2+固载在胺化改性腈纶纤维表面,制备了新型磷酸盐吸附剂(PANAF-Cu),探究了该吸附剂对水体中磷酸盐的吸附性能,为废水中磷的回收提供理论依据.
铜离子固载腈纶纤维的制备及其对水体磷酸盐的去除
Preparation of copper ion supported polyacrylonitrile fiber and its removal of phosphate in water
-
摘要: 为缓解过量磷对水体的富营养化影响,本研究以聚丙烯腈纤维为原料,通过胺化、配位反应,成功制备出一种新型磷酸盐吸附剂(PANAF-Cu),对水体中过量的磷进行回收再利用,同时实现对磷的高资源化利用. 扫描电镜(SEM)、元素分析(EA)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)结果表明,胺基成功接枝,Cu2+在纤维上固载,并通过Cu—N键与纤维骨架结合. 吸附性能实验表明,PANAF-Cu具广泛的pH适应性,其中pH在5—8范围吸附能力较高. 通过对实验数据进行模型拟合,发现PANAF-Cu对磷酸盐的吸附过程更接近于化学吸附,且PANAF-Cu对磷酸盐的吸附更趋向于均匀的单分子层吸附,其对磷的最大理论吸附量为49.03 mg·g−1. PANAF-Cu最优异的循环能力,8次吸-脱附循环后,去除率仍可达到90%以上. 在连续流动实验中发现,当出水量小于2700 mL时,PANAF-Cu对磷酸盐去除率可维持在99 %以上,PANAF-Cu在水体磷酸盐的去除和回收领域拥有良好的应用前景.Abstract: To alleviate the influence of phosphorus on water eutrophication, It is successfully prepared a new phosphate adsorbent (PANAF-Cu) using polyacrylonitrile fiber as raw material through amination and coordination reaction. It can be recovered and reused excess phosphorus in water and realized high resource utilization of phosphorus. The results of scanning electron microscopy (SEM), elemental analysis (EA), X-ray diffraction (XRD) and Fourier infrared spectroscopy (FT-IR) were showed that the amine group was successfully grafted on the fiber, and Cu2+ supported on the fiber skeleton by Cu-N bond. The adsorption performance experiments is showed that the PANAF-Cu had a wide range of pH adaptability. The adsorption capacity was higher in the range of pH 5—8. It can be found that the adsorption process of phosphate by PANAF-Cu was closer to chemical adsorption through model fitting of the experimental data. The adsorption of phosphate by PANAF-Cu was more homogeneous monolayer adsorption. The maximum theoretical adsorption capacity of phosphorus was 49.02 mg·g−1. The PANAF-Cu was had the best circulation ability. The removal rate can still reach to more than 90% after eight times sorption-desorption cycles. It was found that when the water yield was less than 2700 mL in the continuous flow experiment. The phosphate removal rate of the PANAF-Cu could be maintained above 99%. The PANAF-Cu will have a good application prospect in the field of phosphate removal and recovery in water bodies.
-
表 1 不同纤维的元素分析数据
Table 1. Elemental analysis data of different fibers
样品
SampleC/% H/% N/% 1 PANF 66.11 4.86 23.91 2 PANAF 60.30 5.89 22.77 3 PANAF-Cu 55.28 5.49 22.57 4 PANAF-Cu-P 55.76 5.65 21.91 表 2 PANAF-Cu对磷酸盐的动力学参数
Table 2. Kinetic parameters of PANAF-Cu on phosphate
T/K 拟一级动力学模型
Quasi-first-order kinetic model拟二级动力学模型
Quasi-second-order kinetic modelK1/ min qe /(mg·g−1) R2 K2 /min−1 qe/ (mg·g−1) R2 288 0.824 19.781 0.754 0.056 21.533 0.952 298 0.999 20.700 0.688 0.066 22.237 0.931 308 0.927 21.754 0.627 0.073 23.379 0.906 表 3 PANAF-Cu对磷酸盐的等温学参数
Table 3. Isothermal parameters of PANAF-Cu on phosphate
Langmuir Freundlich qe /(mg·g−1) KL/(L·mg−1) R2 KF /(mg·g−1·(L·mg−1)1/n) 1/n R2 49.026 20.258 0.995 3.242 0.659 0.982 表 4 不同洗脱液对PANAF-Cu吸附磷酸盐后的解吸率
Table 4. Desorption rate of phosphate adsorbed by different eluents to PANAF-Cu
洗脱剂
Eluent浓度/(mmol·L−1)
ConcentrationV/mL T/ h 解吸率/%
Desorption rateHCl 1 50 1 52.5 NaCl 1 50 1 2.5 C6H3O7 1 50 1 87.5 EDTA 1 50 1 97.5 表 5 PANAF-Cu对磷酸盐的吸附极限测试
Table 5. Adsorption limit test of phosphate by PANAF-Cu
PANAF-Cu的质量
Quality of PANAF-Cu体积/ mL
Volume时间/ h
Time磷酸盐浓度/(µg·L−1 P)
Phosphate concentration0 10 24 1113 5 10 24 759 10 10 24 393 20 10 24 98 40 10 24 92 60 10 24 90 表 6 与其他除磷吸附剂的比较
Table 6. Comparison with other phosphorus removal adsorbent
吸附剂
Adsorbent吸附时间
Adsorption time最大吸附量(mg·g−1)
Maximum adsorption capacity循环次数
Number of cycles参考文献 黏土-牡蛎壳复合吸附材料 7 d 10 — [27] 鸟蛤壳粉 20 min 7.1 — [28] 掺杂淀粉的磷石膏和磷矿浮选尾矿 60 min 31.28 — [29] 淀粉包裹的Fe3O4纳米颗粒 90 min 7.73 3 [30] 磁性淀粉基Fe3O4黏土聚合物(CIONP) 2 h 3.12 3 [31] 炼钢渣 72 h 10.21 — [32] 掺杂SiO2的活性炭 1 h 0.65 — [33] 固载Fe2+的活性炭 4 h 14.12 — [34] 固载铜离子的功能化腈纶纤维(PANAF-Cu) 24 h 26.99 8 本研究 -
[1] 葛文书. 钙铝层状双氢氧化物/粉煤灰复合物用于磷吸附[D]. 大连: 大连理工大学, 2022. GE W S. Phosphorus removal by composite of calcium-aluminum layered double hydroxides and fly ash[D]. Dalian: Dalian University of Technology, 2022 (in Chinese).
[2] 郝强州. 复合金属氧化物掺杂沸石对水中氨氮和磷酸根的吸附特性研究[D]. 杨凌: 西北农林科技大学, 2022. HAO Q Z. Study on the adsorption characteristics of ammonia nitrogen and phosphate in water by zeolite doped with composite metal oxides[D]. Yangling: Northwest A & F University, 2022 (in Chinese).
[3] 张小宇, 张世熔, 王新月, 等. 镧改性农业废弃秸秆对养殖废水中磷的去除[J]. 环境化学, 2021, 40(4): 1274-1284. doi: 10.7524/j.issn.0254-6108.2020072802 ZHANG X Y, ZHANG S R, WANG X Y, et al. Removal of phosphorus from wastewater by lanthanum modified straws[J]. Environmental Chemistry, 2021, 40(4): 1274-1284 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020072802
[4] 刘欣. 中国磷循环格局演变及其资源与环境效应[D]. 南京: 南京大学, 2017. LIU X. Dynamics of phosphorus cycling in China and the impacts on resources and the environment[D]. Nanjing: Nanjing University, 2017 (in Chinese).
[5] SCHOLZ R W, ULRICH A E, EILITTÄ M, et al. Sustainable use of phosphorus: A finite resource[J]. Science of the Total Environment, 2013, 461/462: 799-803. doi: 10.1016/j.scitotenv.2013.05.043 [6] 冯鑫, 周剑, 潘杨. 蓝铁矿法回收生物膜富集的城市污水中的磷[J]. 环境化学, 2022, 41(5): 1787-1795. doi: 10.7524/j.issn.0254-6108.2021011004 FENG X, ZHOU J, PAN Y. Vivianite crystallization method to recover phosphorus in municipal sewage enriched by biofilm method[J]. Environmental Chemistry, 2022, 41(5): 1787-1795 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021011004
[7] LACSON C F Z, LU M C, HUANG Y H. Calcium-based seeded precipitation for simultaneous removal of fluoride and phosphate: Its optimization using BBD-RSM and defluoridation mechanism[J]. Journal of Water Process Engineering, 2022, 47: 102658. doi: 10.1016/j.jwpe.2022.102658 [8] 康为清, 时历杰, 赵有璟, 等. 水处理中膜分离技术的应用[J]. 无机盐工业, 2014, 46(5): 6-9. KANG W Q, SHI L J, ZHAO Y J, et al. Application of membrane separation technique in water treatment[J]. Inorganic Chemicals Industry, 2014, 46(5): 6-9 (in Chinese).
[9] SUN S F, GAO M C, WANG Y, et al. Phosphate removal via biological process coupling with hydroxyapatite crystallization in alternating anaerobic/aerobic biofilter reactor[J]. Bioresource Technology, 2021, 326: 124728. doi: 10.1016/j.biortech.2021.124728 [10] DONG H, WEI L Z, TARPEH W A. Electro-assisted regeneration of pH-sensitive ion exchangers for sustainable phosphate removal and recovery[J]. Water Research, 2020, 184: 116167. doi: 10.1016/j.watres.2020.116167 [11] 韩飞超. 聚苯乙烯球体基水合氧化锰复合材料的研制及其强化除磷性能[D]. 南京: 南京大学, 2014. HAN F C. Preparation of polystyrene anion exchanger-based Hydrous manganese oxide nanocomposite for preferable phosphate removal from water[D]. Nanjing: Nanjing University, 2014 (in Chinese).
[12] LIU Y Q, CHEN Z H, YIN X S, et al. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated iron oxide[J]. Journal of Molecular Structure, 2023, 1273: 134361. doi: 10.1016/j.molstruc.2022.134361 [13] CHEN L, LI Y Z, SUN Y B, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability[J]. Chemical Engineering Journal, 2019, 360: 342-348. doi: 10.1016/j.cej.2018.11.234 [14] BRAUN J C A, BORBA C E, GODINHO M, et al. Phosphorus adsorption in Fe-loaded activated carbon: Two-site monolayer equilibrium model and phenomenological kinetic description[J]. Chemical Engineering Journal, 2019, 361: 751-763. doi: 10.1016/j.cej.2018.12.073 [15] 吴语潇, 杨甜, 徐武松, 等. 极性可调功能化纤维的构建及其对废水磷酸盐的去除[J]. 环境化学, 2021, 40(12): 3898-3908. doi: 10.7524/j.issn.0254-6108.2021051007 WU Y X, YANG T, XU W S, et al. The construction of polarity regulable functionalized fibers and its removal of phosphate in wastewater[J]. Environmental Chemistry, 2021, 40(12): 3898-3908 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021051007
[16] 崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10): 4210-4226. CUI W Y, AI H Y, ZHANG S H , et al. Research status on application of modified adsorbents in phosphorus removal from wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4210-4226 (in Chinese).
[17] XU G, CAO J, ZHAO Y. et al. Phosphorylated Polyacrylonitrile Fibers as an Efficient and Greener Acetalization Catalystr[J]. Chemistry –An Asian Journal, 2017, 12(19): 2565-2575. doi: 10.1002/asia.201700846 [18] NATARAJ S K, YANG K S, AMINABHAVI T M. Polyacrylonitrile-based nanofibers—a state-of-the-art review[J]. Progress in Polymer Science, 2012, 37(3): 487-513. doi: 10.1016/j.progpolymsci.2011.07.001 [19] XU W S, ZHENG W J, WANG F J, et al. Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate[J]. Chemical Engineering Journal, 2021, 403: 126349. doi: 10.1016/j.cej.2020.126349 [20] ZHENG W, WU Q, XU W. et al. Efficient capture of phosphate from wastewater by a recyclable Environmental Science-Water Research & Technology, 2022, 8(3): 607-618. [21] 丁天琦. 基于静电纺丝制备聚丙烯腈基多孔纤维膜及其吸附性能研究[D]. 合肥: 安徽建筑大学, 2023. DING T Q. Preparation and adsorption properties of polyacrylonitrile based porous fiber membranes based on electrospinning technique[D]. Hefei: Anhui Jianzhu University, 2023 (in Chinese).
[22] MEEDS J A, MARTY KRANABETTER J, ZIGG I, et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas[J]. The ISME Journal, 2021, 15: 1478-1489. doi: 10.1038/s41396-020-00864-z [23] KUANG Y Z, HE H, CHEN S X, et al. Adsorption behavior of CO2 on amine-functionalized polyacrylonitrile fiber[J]. Adsorption, 2019, 25(4): 693-701. doi: 10.1007/s10450-019-00070-0 [24] DANON A, STAIR P C, WEITZ E. FTIR study of CO2 adsorption on amine-grafted SBA-15: Elucidation of adsorbed species[J]. The Journal of Physical Chemistry C, 2011, 115(23): 11540-11549. doi: 10.1021/jp200914v [25] LIU R T, CHI L N, WANG X Z, et al. Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs[J]. Chemical Engineering Journal, 2019, 357: 159-168. doi: 10.1016/j.cej.2018.09.122 [26] ZHOU S L, HE H, WANG L, et al. The structural design of polyacrylonitrile fibre-based colorimetric sensors and their synergistic interaction mechanism for Cu2+ detection[J]. Journal of Materials Science, 2020, 55(35): 16806-16821. doi: 10.1007/s10853-020-05217-x [27] ZHOU Z J, XU Q L, WU Z J, et al. Preparation and characterization of clay-oyster shell composite adsorption material and its application in phosphorus removal from wastewater[J]. Sustainable Chemistry and Pharmacy, 2023, 32: 101023. doi: 10.1016/j.scp.2023.101023 [28] NAYEEM A, MIZI F, ALI M F, et al. Utilization of cockle shell powder as an adsorbent to remove phosphorus-containing wastewater[J]. Environmental Research, 2023, 216: 114514. doi: 10.1016/j.envres.2022.114514 [29] JIANG W, JIANG Y S, LI P Y, et al. Reuse of phosphogypsum and phosphorus ore flotation tailings as adsorbent: The adsorption performance and mechanism of phosphate[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111313. doi: 10.1016/j.jpcs.2023.111313 [30] ATNAFU T, LETA S. Plasticized magnetic starch-based Fe3O4 clay polymer nanocomposites for phosphate adsorption from aqueous solution[J]. Heliyon, 2021, 7(9): e07973. doi: 10.1016/j.heliyon.2021.e07973 [31] 丁程程, 潘纲, 张美一. 淀粉改性纳米四氧化三铁的制备及其除磷效能的研究[J]. 环境工程学报, 2011, 5(10): 2167-2172. DING C C, PAN G, ZHANG M Y. Study on preparation of starch-coated Fe3O4 and its phosphate removal properties[J]. Chinese Journal of Environmental Engineering, 2011, 5(10): 2167-2172 (in Chinese).
[32] VU M T, NGUYEN L N, ABU HASAN JOHIR M, et al. Phosphorus removal from aqueous solution by steel making slag–Mechanisms and performance optimisation[J]. Journal of Cleaner Production, 2021, 284: 124753. doi: 10.1016/j.jclepro.2020.124753 [33] MEHRABI N, SOLEIMANI M, SHARIFIFARD H, et al. Optimization of phosphate removal from drinking water with activated carbon using response surface methodology (RSM)[J]. Desalination and Water Treatment, 2016, 57(33): 15613-15618. doi: 10.1080/19443994.2015.1070763 [34] WANG Z F, SHI M, LI J H, et al. Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon[J]. Journal of Environmental Sciences, 2014, 26(3): 519-528. doi: 10.1016/S1001-0742(13)60440-4